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Section I

Exercise (I.1). For a non-negative random variable m such that E[m] = 1 show
that E[m log(m] ≥ 0.

Solution. First define φ(m) = m log(m). Note that φ′′(m) = 1
m > 0 since m is

non-negative. So, φ is convex in m. Since φ is everywhere convex, it always lies
above its first-order Taylor expansion.

φ(m) ≥ φ(1) + φ′(1)(m− 1)

= 1 ∗ log(1) + (log(1) + 1)(m− 1)

= m− 1

We can now take the expectation of both sides of the equation to get the result.
E[m log(m] = E[φ(m] ≥ E[m− 1] = 0.

Exercise (I.2). Consider security markets extending over T periods where T <
∞, with J long-lived securities that may pay dividends at any subset of dates
from 1 to T . There are no constraints on portfolio holdings. Assuming that
security prices are arbitrage free and there is a one-period risk-free return at
every date, show that discounted gains on every security have the martingale
property under risk-neutral probabilities.

Solution. This is an immediate implication from the definitions in Jan Werner’s
notes. First the discount factor.

ρ(st) =

t∏
τ=1

1

r̄(sτ )

Take the event prices to be q(st). Define the risk neutral probabilities by

π∗(st) =
q(st)

ρ(st)
.
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From the definition of event prices, we have

q(st)pj(st) =
∑

st+1⊂st

q(st+1)pj(st+1) + q(st+1)xj(st+1).

This implies

pj(st) =
∑

st+1⊂st

1

r̄(st+1)

q(st+1)

ρ(st+1)

ρ(st)

q(st)
(pj(st) + xj(st))

=
1

r̄(st+1)
Eπ∗(st+1|st)[pj(st+1) + xj(st+1)].

Finally, take the definition of discounted gain.

dj(st) = ρ(st)pj(st) +

t∑
τ=1

ρ(sτ )xj(sτ )

Now we’ve finished definitions and can solve the actual problem. I’m going to
use shorthand notation from this point on.

Take any two dates T > t.

E∗t [dj,T ] = E∗t

[
ρT pj,T +

T∑
τ=1

ρτxj,τ

]

= E∗t [ρT (pj,T + xj,T )] + E∗t

[
T−1∑
τ=t+1

ρτxj,τ

]
+

t∑
τ=1

ρτxj,τ

By the Law of Iterated Expectations,

= E∗t
[
ρT−1

1

r̄T
E∗T−1[pj,T + xj,T ]

]
+ E∗t

[
T−1∑
τ=t+1

ρτxj,τ

]
+

t∑
τ=1

ρτxj,τ

= E∗t

[
ρT−1pj,T−1 +

T−1∑
τ=t+1

ρτxj,τ

]
+

t∑
τ=1

ρτxj,τ

continuing iteratively,

= ρtpj,t +

t∑
τ=1

ρτxj,τ

= dj,t

This is the martingale property.

Exercise (I.3). Consider security markets with I agents. All agents’ preferences
have expected utility representations with differentiable, strictly increasing util-
ities and with common probabilities of states π. Agents are strictly risk averse.
The aggregate endowment at date 1 is risk free. (You may assume that there is
no consumption at date 0).
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Show that fair pricing holds in an equilibrium if security markets are com-
plete, that is, show that Eπ[Rj ] = Rf , where Rj denotes the return on any
security j and Rf is the risk-free return.

Solution. Since the utilities are differentiable, we can take the first order condi-
tions. These become,

RfE[v′i(ci)] = E[v′i(ci)R
j ]

for every consumer i and every security j. Since markets are complete, let us
consider an Arrow security that pays one unit in state ŝ.

Rf =
π(ŝ)

pŝ

v′i(ci(ŝ))

E[vi(ci)]

This must hold for every agent. So,

v′i(ci(ŝ))

E[v′i(ci)]
=
v′k(ck(ŝ))

E[v′k(ck)]
.

This holds for every state. The denominators do not depend on the state. This
means we can rewrite the equation as

v′i(ci(s)) = ai,kv
′
k(ck(s)).

Since every agent has strictly increasing utility and is strictly risk averse, we
get the following implications.

ci(ŝ) > ci(s̃)

⇒v′i(ci(ŝ)) < v′i(ci(s̃))

⇒v′k(ck(ŝ)) < v′k(ck(s̃))

⇒ck(ŝ) > ck(s̃)

In other words, every agent’s consumption is strongly comonotone with every
other agent. Now since the aggregate endowment is risk-free, it must be that
each individual consumption is also risk-free. This implies that v′i(ci(s)) =
E[v′i(ci)]. So,

Rf = E
[
v′i(ci)

E[v′i(c)]
Rj
]

= E[Rj ].

Exercise (I.4). Consider a setting in which financial assets pay normally dis-
tributed returns. The representative agent has CARA utility that is represented
by the utility aggregator

V (c) = −E[exp(−ac)] (1)

where a > 0 is the agent’s absolute risk aversion coefficient and E[·] is the
standard expectations operator under the physical probability measure. The
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agent can trade in a risk-free asset that pays a constant return Rf and a vector
of risky assets with returns R = (R1, R2, . . . , RN )′ that are normally distributed
with N(E[R],Σ).

The agent holds an initial position ef ∈ R in the risk-free asset and a vector
e ∈ RN of the risky assets. The agent can choose a portfolio, consisting of a
position θf in the risk-free asset, and θ ∈ RN in the risky assets. After the
uncertain state is realized, the agent consumes

c = θfRf + θ′R. (2)

Show that
E[R]−Rf = aCov(R,Rm), (3)

where Rm ≡ efRf + e′R is the market portfoilo.

Solution. First substitute equation (2) into equation (1) and look at the agent’s
maximization problem,

max
θ∈RN

−E[exp(−aRf (W − 1′θ)− aθ′R)]

where W is the initial wealth from the agent’s endowment, but will be entirely
unimportant for this problem.

Since R is normally distributed, we can rewrite the problem as

max
θ
− exp

(
−aRf (W − 1′θ)− aθ′E[R] +

a2

2
θ′Σθ

)
.

The first order conditions then give the following.(
−aRf + aE[R]− a2Σθ

)
eE[c]+

1
2V [c] = 0

⇒ E[R]−Rf = aΣθ

This is a vector of equalities. Take some security i.

E[Ri]−Rf = a

N∑
j=1

θjσij where σij is the covariance of Ri with Rj

= a

N∑
j=1

ejσij by market clearing

= aCov(Ri, e′R) by linearity of covariance operators

= aCov(Ri, efRf + e′R) since the risk free security has no variance

= aCov(Ri, Rm)

This gives us equation (3).
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Section II

Question II.1

Consider security markets with infinite time-horizon and uncertainty described
by an event tree with a finite number of events at every date t = 0, 1, . . .. There
are J securities with dividends xj(st) ≥ 0 for every j and every event st at date
t ≥ 1. There are I agents whose preferences over infinite-time consumption
plans are described by discounted time-seperable expected utilities with strictly
increasing period-utility functions. (You may assume that discount factors and
probabilities are common to all agents.) Agents have consumption endowments

ωit for all t ≥ 0 and initial portfolios of securities ĥi0 ∈ RJ+. Consumption is
restricted to be positive.

Exercise (i). State definitions of natural debt bounds (where debt cannot ex-
ceed discounted present value of future endowments) and equilibrium under
natural debt constraints.

Solution.

Definition. Let q(st) be the event prices. Then the natural debt bounds
are

N i(st) ≡
1

q(st)

∞∑
τ=t

∑
sτ⊂st

q(sτ )ωi(sτ ).

Definition. An equilibrium under natural debt constraints is a price
process p and consumption-portfolio allocation {ci, hi}Ii=1 such that the con-
sumption plan ci and the portfolio strategy hi are a solution to agent i’s choice
problem,

max
c,h

u(c)

s.t. c(s0) + p(s0)h(s0) = ωi(s0) + p(s0)ĥi0

c(st) + p(st)h(st) = ωi(st) + [p(st) + x(st)]h(s−t ) ∀t, st

[p(st+1) + x(st+1)]h(st) ≥ −
1

q(st+1)

∞∑
τ=t+1

∑
sτ⊂st+1

q(sτ )ωi(sτ ) ∀t, st,

and markets clear
I∑
i=1

hi(st) = h̄0 ∀t, st

I∑
i=1

ci(st) = ω(st) + x(st)h̄0 ∀t, st.
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Exercise (ii). Show that natural debt bounds are not too tight (so that the
self-enforcing condition holds with equality) when the punishment for default
on debt repayment is zero consumption forever from the default date on.

Solution. Natural debt bounds are not too tight if

U∗ist (p,D,−D(st)) = V
i

d(st)

where the term on the left is the maximum continuation utility under price
system p and debt bounds D when you have initial wealth −D(st), and the
term on the right is the utility obtained if you default. In this case, the right
hand side is the utility of zero consumption forever.

Since we have initial wealth of −D(st), this period’s budget constraint is

c(st) + p(st)h(st) ≤ −D(st).

The current period’s debt constraint is

[p(st+1) + x(st+1)]h(st) ≥ −D(st+1)

= − 1

q(st+1)

∞∑
τ=t+1

∑
sτ⊂st+1

q(sτ )ωi(sτ ).

Remember that from the definition of event prices, we have

p(st) =
1

q(st)

∑
st+1⊂st

q(st+1)[p(st+1) + x(st+1)].

This implies the following.

−D(st) ≥ c(st) + p(st)h(st)

=
1

q(st)

∑
st+1⊂st

q(st+1)[p(st+1) + x(st+1)]h(st)

≥ c(st)−
1

q(st)

∑
st+1⊂st

q(st+1)
1

q(st+1)

∞∑
τ=t+1

∑
sτ⊂st+1

q(sτ )ω(sτ )

= c(st)−
1

q(st)

∞∑
τ=t

∑
sτ⊂st

q(sτ )ω(sτ )

= c(st)−D(st)

This implies that we must have zero consumption this period, and that we
will be exactly on the debt constraint next period as well. Continuing the
logic, this implies that the only consumption stream in the budget set is zero
consumption forever. Thus, the maximized value going forward is the utility of
zero consumption forever. This means that the natural debt bounds are not too
tight when the punishment of default is zero consumption forever.
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Exercise (iii). Show that every consumption allocation in equilibrium under
natural debt constraints in dynamically complete markets and with zero price
bubbles is Pareto optimal.

Solution. Start with any allocation that satisfies the security markets budget
constraints with equality.

c(s0) + p(s0)h(s0) = ω(s0) + p(s0)ĥ(s0)

c(st) + p(st)h(st) = ω(st) + [p(st) + x(st)]h(st−1)

Let us redefine the endowment process by ω̂(s0) = ω(s0) + p(s0)ĥ(s0) and
ω̂(st) = ω(st) otherwise. This implies the following.

c(s0)− ω̂(s0) = −p(s0)h(s0)

= − 1

q(s0)

∑
s1⊂s0

q(s1)[p(s1) + x(s1)]h(s0)

= 1
1

q(s0)

∑
s1⊂s0

q(s1)[c(s1)− ω̂(s1) + p(s1)h(s1)]

We can rearrange the equation.

1∑
t=0

∑
st

q(st)(c(st)− ω̂(st)) = −
∑
s1⊂s0

q(s1)p(s1)h(s1)

Continue the same process.

∞∑
t=0

∑
st

q(st)(c(st)− ω̂(st)) = − lim
T→∞

∑
sT⊂s0

q(sT )p(sT )h(sT )

The price bubble on an asset is defined by σ = limT→∞ q(sT )p(sT ). We assumed
in the problem that this was equal to zero. Since we have natural debt bounds,
we also know that h(st) is bounded. This means that the right hand side of the
above equation must be zero. Therefore,

∞∑
t=0

q(st)c(st) ≤
∞∑
t=0

q(st)ω̂(st).

This is the budget constraint in an Arrow-Debreu problem. This shows that
the consumption stream from any allocation in the security markets setup that
satisfies the budget constraints with equality is also feasible in the Arrow-Debreu
setup.

Now take any consumption stream that satisfies the Arrow-Debreu budget
constraint with equality. Since markets are dynamically complete, for any st
there exists a portfolio h(st) such that

q(st+1)[p(st+1) + x(st+1)]h(st) =

∞∑
τ=t+1

∑
sτ⊂st+1

q(sτ )(c(sτ )− ω̂(sτ )).
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We can use that equation for every state to get a portfolio strategy h(st) such
that {c(st), h(st)} will satisfy the security market budget constraints. This
means that any allocation satisfying the Arrow-Debreu budget constraint also
can satisfy the security markets budgets constraints with some portfolio strategy.

Since utilities are strictly increasing, we only need to worry about the allo-
cations that make the budget constraints hold with equality.

Since the budget feasible sets are the same in the two setups, the optimal
consumption stream must also be the same for the right endowments. We al-
ready know that a competitive equilibrium in the Arrow-Debreu setup is Pareto
optimal. This shows that a competitive equilibrium in the security markets
must also be Pareto optimal, because it is an AD-CE.
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Question II.2

An agent has Epstein-Zin preferences with value recursion

Ut =
[
(1− β)(Ct)

1−ρ + β[Rt(Ut+1)]1−ρ
] 1

1−ρ

where Rt(Ut+1) represents the risk adjustment of the continuation value

Rt(Ut+1) =
(
E
[
(Ut+1)1−γ

∣∣ Ft]) 1
1−γ .

Assume that the intertemporal elasticity of substitution, ρ = 1 and that growth
rate of consumption can potentially take two values g ∈ {g1, g2} every period.

Exercise (a). Scenario 1: Assume that the growth rate is drawn from a distri-
bution (p, 1− p) initially, and then held fixed over time. Derive the expression
for v ≡ log

(
U
C

)
(before the growth rate is known) in terms of the primitives,

i.e. γ, β, and the distribution of g.

Solution. First recall that as ρ goes to 1, CES preferences become Cobb-Douglas.

Ut = C1−β
t Rt(Ut+1)β

We can now write thte ratio of interest easily then recursively substitute in.

Ut
Ct

=

[
Rt
(
Ut+1

Ct

)]β
=

[
Rt
(
Ut+1

Ct+1

Ct+1

Ct

)]β
=

[
Rt

([
Rt+1

(
Ut+2

Ct+2

Ct+2

Ct+1

)]β
Ct+1

Ct

)]β
...

=

Rt
[Rt+1

([
Rt+2

(
. . .

Ct+3

Ct+2

)]β
Ct+2

Ct+1

)]β
Ct+1

Ct

β

= Et


[Rt+1

([
Rt+2

(
. . .

Ct+3

Ct+2

)]β
Ct+2

Ct+1

)]β
Ct+1

Ct

1−γ


β
1−γ

This was done without any assumption on the distribution of g. Now we use
the fact that g is picked in the first period then, held fixed forever. This means
that R isn’t doing anything from t+ 1 on. Let I denote everything in the above
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equation inside the first parenthesis and suppose gi was drawn.

I =
Ct+1

Ct

(
Ct+2

Ct+1

(
Ct+3

Ct+2
. . .

)β)β

=

∞∏
τ=0

(
Ct+τ
Ct

)βτ

⇒ log(I) =

∞∑
τ=0

βτ log

(
Ct+τ
Ct

)
=

gi
1− β

We can now plug this back into the above equation.

Ut
Ct

=
(
pe

1−γ
1−β g1 + (1− p)e

1−γ
1−β g2

) β
1−γ

⇒ vt = log

(
Ut
Ct

)
=

β

1− β
1− β
1− γ

log
(
pe

1−γ
1−β g1 + (1− p)e

1−γ
1−β g2

)
I know that the 1 − β terms cancel, but if we leave them in, it will look cool
later.

Exercise (b). Scenario 2: Now suppose that the growth rate is drawn every
period with probabilities (p, 1− p). Again derive the expression for ṽ ≡ log(UC )
in terms of the primitives as before.

Solution. It starts exactly the same way.

Ut
Ct

=

Rt
[Rt+1

([
Rt+2

(
. . .

Ct+3

Ct+2

)]β
Ct+2

Ct+1

)]β
Ct+1

Ct

β

= Et


Et+1


Et+2

[(
. . .

Ct+3

Ct+2

)1−γ
] β

1−γ
Ct+2

Ct+1

1−γ
β

1−γ

Ct+1

Ct


1−γ

β
1−γ

Now since we assumed the growth was iid, we can seperate the expectations and
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use the law of iterated expectations to get a simpler expression.

Ut
Ct

= Et

[(
Ct+1

Ct

)1−γ
] β

1−γ

Et

[(
Ct+2

Ct+1

)1−γ
] β2

1−γ

Et

[(
Ct+2

Ct+1

)1−γ
] β3

1−γ

. . .

=

( ∞∏
τ=0

(
pe(1−γ)g1 + (1− p)e(1−γ)g2

)βτ) β
1−γ

⇒ log

(
Ut
Ct

)
=

β

1− γ

∞∑
τ=0

βτ log
(
pe(1−γ)g1 + (1− p)e(1−γ)g2

)
⇒ ṽ =

β

1− β
1

1− γ
log
(
pe(1−γ)g1 + (1− p)e(1−γ)g2

)

Exercise (c). Finally show that γ > 1 is necessary and sufficient for the agent
to prefer the consumption process where the consumption level is drawn every
period.

Solution. We know that when γ = 1 we have expected utility and the agent is
indifferent between the two options. Now define

Ω(θ) =
β

1− β
1

θ
log
(
Et[eθg]

)
.

Notice that v = Ω
(

1−γ
1−β

)
and ṽ = Ω(1− γ). We want to compare v and ṽ. We

know that 1−γ
1−β > 1−γ if and only if γ < 1. All we need to know now is whether

Ω is an increasing or decreasing function. We simply differentiate with respect
to θ.

Ω′(θ) = − β

1− β
1

θ2
log
(
E
[
eθg
])

+
β

1− β
1

θ

E
[
geθg

]
E [eθg]

It’s not immediately obvious whether this is positive or negative. We’re going
to use a funny little trick to show the sign of this function. First let

m =
eθg

E [eθg]
.

It’s clear that m ≥ 0 and that E[m] = 1. This implies that E[m log(m)] ≥ 0
(see the exercise in section 1). This gives us the following.

E
[
eθg

E[eθg]
log

(
eθg

E[eθg]

)]
≥ 0

⇒ E
[
eθg log(eθg)

E[eθg]

]
− log

(
E[eθg]

)
≥ 0

⇒ β

1− β
1

θ
E
[
geθg

E[eθg]

]
− β

1− β
1

θ2
log
(
E[eθg]

)
≥ 0

⇒ Ω′(θ) ≥ 0
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Since Ω is increasing, we have proved that v > ṽ if and only if γ < 1. The iid
consumption process is prefered if and only if γ > 1.
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Question II.3

An aggregate endowment of one unit is split between two agents, 1 and 2 as
follows:

y1(s) + y2(s) = 1,

where s ∈ {h, `} and the endowment of agent 1 satisfies y1(h) > 1
2 and y1(`) < 1

2 .
Both types of agents can trade a complete set of arrow securities that are in
zero net supply. Their preferences over consumption streams are given by

Ei
[ ∞∑
t=0

βt log(ci(s
t))

]
,

where Ei is an expectation operator under the probability measure that makes
st i.i.d. with pi(h) = pi ∈ (0, 1). Let p0(h) = 1

2 be the probability measure that
nature uses to draw st. Histories are represented with st = (s0, s1, . . . , st).

Exercise (a). Define a competitive equilibrium –allocation, prices, etc– for this
economy.

Solution.

Exercise (b). Let qt(s
t+τ ) be the price of one unit of consumption in state

st+τ at history st and ωi,t(s
t) =

∑∞
τ qt(s

t+τ )yi(s
t+τ ) be agent i’s wealth, or

the present discounted value of his endowment stream. Show that the wealth
dynamics are given by

Rt(s
t) ≡ ω2,t(s

t)

ω1,t(st)
=

(
p2(st)

p1(st)

)(
ω2,t−1(st−1)

ω1,t−1(st−1)

)
.

Solution.

Exercise (c). Suppose p1 = p0 = 1
2 and p2 6= 1

2 . Use the law of motion in
the previous step to show that limt→∞ cit = 1. (Hint: Use the Law of Large
Numbers to approximate the limiting behavior of Rt and then use the optimal
consumption rules).

Solution.
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Question II.4

Consider the following variation of the model of Kyle (1985) with singe trading
date: There is a single risky security whose future payoff, denotes by ṽ, is nor-
mally distributed with mean v̄ and variance σ2

v > 0. There are two strategic,
informed traders, a market maker, and liquidity traders. The demand of liquid-
ity traders, denoted by z̃, is normally distributed with zero mean and variance
σ2
z > 0, independent of ṽ. Neither the strategic traders not the market maker

can observe liquidity demand.
Prior to trading, strategic trader 1 observes private signal θ1 with trader 2

observes private signal θ2. Those signals are realizations of random variables θ̃1
and θ̃2, respectively, where

θ̃1 = ṽ + ε̃ and θ̃2 = ε̃,

and ε̃ is normally distributed with zero mean and variance σ2
ε > 0, independent

of (ṽ, z̃). Strategic traders and the market maker are risk neutral.

Exercise (i). State a definition of a linear equilibrium.

Solution. A linear equilibrium consists of linear functions x1(θ1), x2(θ2), and
P (y) such that

x1(θ1) = argmax
x

E
[
x
(
ṽ − P (x+ x2(θ̃2) + z̃)

)
| θ1

]
, (4)

x2(θ2) = argmax
x

E
[
x
(
ṽ − P (x+ x1(θ̃1) + z̃)

)
| θ2

]
, (5)

and
P (y) = E[ ṽ | y = x1(θ̃1) + x2(θ̃2) + z̃ ]. (6)

Since these functions are linear, we will write them as x1(θ1) = α0 + α1θ1, and
x2(θ2) = β0 + β1θ2, and P (y) = λ0 + λ1y.

Exercise (ii). Assume that E[ṽ] = 0. Find a linear equilibrium.

Solution. Start with agent 1’s maximization problem.

max
x

E
[
x
(
ṽ − P (x+ x2(θ̃2) + z̃)

)
| θ1

]
= max

x
E
[
x
(
ṽ − λ0 − λ1(x+ β0 + β1θ̃2 + z̃)

)
| θ1

]
= max

x
E
[
ṽx− λ0x− λ1x2 − λ1β0x− β1λ1θ̃2x− λ1z̃x | θ1

]
= max

x

σ2
v

σ2
v + σ2

ε

θ1x− λ0x− λ1x2 − λ1β0x−
σ2
ε

σ2
v + σ2

ε

θ1β1λ1x

The first order condition for this is

2λ1x
∗ =

σ2
v

σ2
v + σ2

ε

θ1 − λ0 − λ1β0 −
σ2
ε

σ2
v + σ2

ε

θ1β1λ1.
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We now have that x1(θ1) = α0 + α1θ1 where

α0 = −λ0 + λ1β0
1λ1

,

and

α1 =

σ2
v

σ2
v+σ

2
ε
− σ2

ε

σ2
v+σ

2
ε
β1λ1

2λ1
.

Now we can solve agent two’s problem in the same way.

max
x

E
[
x
(
ṽ − P (x+ x1(θ̃1) + z̃)

)
| θ2

]
= max

x
E
[
x
(
ṽ − λ0 − λ1(x+ α0 + α1θ̃1 + z̃)

)
| θ2

]
= max

x
E
[
ṽx− λ0x− λ1x2 − λ1α0x− α1λ1θ̃1x− λ1z̃x | θ2

]
= max

x
− λ0x− λ1x2 − α0λ1x− α1λ1θ2x

The first order condition for this is

2λ1x
∗ = −λ0 − α0λ1 − α1λ1θ0.

We now have that x2(θ2) = β0 + β1θ2 where

β0 = −λ0 + α0λ1
2λ1

,

and
β1 = −α1

2
.

Now we can look at the market maker’s problem.

E [ ṽ | y = x̃1 + x̃2 + z̃ ] = E
[
ṽ | y = α0 + α1θ̃1 + β0 + β1θ̃2 + z̃

]
Notice that

y = α0 + β0 + α1ṽ + (α1 + β1)ε̃+ z̃.

For convenience we will define

ŷ =
y − α0 − β0

α1
= ṽ +

(
1 +

β1
α1

)
ε̃+

1

α1
z̃.

We can now do the expectation more easily.

E[ ṽ | ŷ ] =
σ2
v

σ2
v + σ2

ε (1 + β1

α1
)2 +

σ2
z

α2
1

ŷ

Plugging in for ŷ gives us our linear equation for P (y).
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This system of equations can be simplified somewhat. First conjecture notice
that α0 = β0 = λ0 = 0. Then it becomes,

β1 = −α1

2
,

λ1 =
σ2
v

σ2
v +

σ2
ε

4 +
σ2
z

α2
1

1

α1
,

and

α1 =

σ2
v

σ2
v+σ

2
ε
− σ2

ε

σ2
v+σ

2
ε
β1λ1

2λ1
.

We can plug the first two equations into the third one and solve for α1.

α1 =

σ2
v

σ2
v+σ

2
ε

+ 1
2

σ2
ε

σ2
v+σ

2
ε

σ2
v

σ2
v+

1
4σ

2
ε+

σ2z
α2
1

2
σ2
v

σ2
v+

1
4σ

2
ε+

σ2z
α2
1

1
α1

Divide both sides by alpha and bring the denomenator up to the top.

1 =
1

2

σ2
v + 1

4σ
2
ε +

σ2
z

α2
1

σ2
v + σ2

ε

+
1

4

σ2
ε

σ2
v + σ2

ε

=
1

2

σ2
v + 1

4σ
2
ε +

σ2
z

α2
1

σ2
v + σ2

ε

⇒ σ2
z

α2
1

= 2(σ2
v + σ2

ε )− σ2
v −

3

4
σ2
ε

⇒ α1 =

√
σ2
z

σ2
v + 5

4σ
2
ε

Notice that this is very similar to the example Jan did in his notes. The answer

in his example (translated to this notation) is α1 =
√

σ2
z

σ2
v
. His example in the

notes does not have any ε error. The insider observes the value perfectly. If we
let σ2

ε go to zero, we get the same answer as in his notes.

Exercise (iii). Show that trader 2 trades against his signal in equilibrium of
part (ii), that is, his demand is positive when the signal is negative and vice
versa. Give an intuitive explanation of this result.

Solution. First, α1 is clearly positive because it is just a square root of positive
numbers. Since β1 = −α1

2 , it must be negative. β1 is the response of agent 2 to
his signal. Since it is negative, that means that when he gets a positive signal
he demands a negative amount, and when he gets a negative signal he demands
a positive amount.
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The intuition is as follows. When agent 2 gets a positive signal, he knows
that agent 1 is overvaluing the security. Agent 1 will then demand too much.
This will lead the price to be higher than the true value on average. Then, agent
2 wants to take a short position.

The reverse is true when agent 2 gets a negative signal.
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