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Section I

Exercise (I.1). Consider the optimal portfolio choice problem with one risky
security and a risk-free security. The agent has constant absolute risk aversion
equal to α. The risky security has normaly distributed payoff with mean µ and
variance σ2. Its price is p. The risk-free security has return r. Derive the agent’s
optimal investment in the risky security as a function of α, µ, σ, p, and r.

Solution. Set up the problem as choosing the number of shares of each security
subject to some initial wealth, W .

max
θf ,θr

− E[exp(−α(θf r̄ + θrr))]

s.t. θf + pθr ≤W

Simplifying slightly, the problem becomes

max
θ
−E[exp(−αr̄(W − pθ)− αθr)].

Since the risky asset is normally distributed, this is the same as the following
problem.

max
θ
− exp

(
−αr̄(W − pθ)− αµθ + α2σ

2

2
θ2
)

The first order condition is(
−αr̄p+ αµ− α2σ2θ∗

)
exp

(
−αr̄(W − pθ∗)− αµθ∗ + α2σ

2

2
θ∗2
)

= 0.

We can divide away the exponential term and solve for θ.

θ∗ =
1

ασ2
(µ− rp)

In the above equation θ∗ is the number of shares of the risky security. The
wealth invested in the risky security is pθ∗.
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Exercise (I.2). Consider a static economy with N securities with a price vector
q ∈ RN and payoffs given by an N ×K matrix D. The row Di thus correspond
to the vector of state-dependent payoffs of security i. A portfolio θ ∈ RN is
a vector of holdings of individual securities, with market value p · θ and payoff
D′θ ∈ RK .

1. When is the pair (D, q) said to be arbitrage free?

2. Show that absence of arbitrage is necessary and sufficient for existence of
a state-price vector m ∈ RK++ such that q = Dm.

Solution. The pair (D, q) is said to be arbitrage-free if there does not exist
θ ∈ RN such that q′θ ≤ 0 and D′θ ≥ 0 with at least one strict inequality (note
that the second one is a vector of inequalities and any one of them could be
strict).

Let’s start with the easy direction of the proof. Suppose that there exist
m ∈ RK++ such that q = Dm. Then for any θ ∈ RN ,

q′θ = m′D′θ.

Since m is strictly positive, if q′θ is strictly negative D′θ must have at least
one negative element. Also, if D′θ is nonnegative and has at least one strictly
positive element, then q′θ is positive. This proves the necessary part of question
2.

Now let’s do the other easy but slightly longer direction of the proof. The
idea of the proof is going to be the same as any other proof that gives the
existence of a price vector. We use the assumptions to construct a closed convex
set, then use the seperating hyperplane theorem to get your price. First we
assume no arbitrage. Define the following set in R× RK ,

K =
{

(−q′θ,D′θ)
∣∣ ∀θ ∈ RN

}
.

This set is obviously closed and convex. In fact, it is a linear subspace of RK+1.
The no arbitrage condition implies that

K ∩ RK+1
+ = {0}.

We will take the positive orthant to be the other set in our seperating hyperplane
arguement. It is clearly closed and convex. Moreover, it is a cone.

The seperating hyperplane theorem gives us the existence of a vector m ∈
RK+1 such that k′m ≤ 0 for all k ∈ K, r′m ≥ 0 for all r ∈ RK+1

+ , and the
second inequality is strict for all r 6= 0. Since r′m > 0 for all basis vectors r, it
must be that m is strictly positive in all entries.

Remember that K was a linear subspace. This means that if k ∈ K then
−k ∈ K. Thus, k′m = 0 for all k ∈ K. To write it in another way, this says

− θ′qm1 + θ′Dm−1 = 0 ∀θ ∈ RN

⇒ qm1 = Dm−1.

Now define m∗ ∈ RK++ by m∗ = m−1

m1
, and we have the result. q = D′m.
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Exercise (I.3). For a non-negative random variable m such that E[m] = 1 show
that E[m log(m)] ≥ 0.

Solution. First define φ(m) = m log(m). Note that φ′′(m) = 1
m > 0 since m is

non-negative. So, φ is convex in m. Since φ is everywhere convex, it always lies
above its first-order Taylor expansion.

φ(m) ≥ φ(1) + φ′(1)(m− 1)

= 1 ∗ log(1) + (log(1) + 1)(m− 1)

= m− 1

We can now take the expectation of both sides of the equation to get the result.
E[m log(m)] = E[φ(m)] ≥ E[m− 1] = 0.

Exercise (I.4). Consider portfolio choice problem with a risky security with
(gross) return r and a risk-free security with return r̄. The agent has multiple-
prior expected utility function with strictly increasing and convace utility func-
tion v and a closed and convex set of probability measures P on a finite state-
space. The agent has date-1 state-dependent endowment w1 ∈ M. Prove that
if r̄ = EP [r] for some P ∈ P, then the optimal portfolio is such that the optimal
date-1 consumption (equal to portfolio payoff plus endowment) is risk-free.

Solution. The set-up of the problem is the following.

sup
θ

min
P∈P

EP [v(w1 + (w0 − θ)r̄ + θr)]

The min is well defined because P is compact and EP [v] is continuous in P .
Since w1 is in the asset span, we can write w1 = a+ br. Then, we can see that
the agent can acheive risk-free consumption iff they set θ = −b. Plugging that
in, the utility payoff is v(a+ (b+ w0)r̄).

Let P ∗ ∈ P be the probability measure such that EP∗ [r] = r̄. Now consider
any strategy θ.

min
P∈P

EP [v(w1 + (w0 − θ)r̄ + θr)] ≤ EP∗ [v(w1 + (w0 − θ)r̄ + θr)]

≤ v (EP∗ [w1 + (w0 − θ)r̄ + θr])

= v (a+ bEP∗ [r] + (w0 − θ)r̄ + θEP∗ [r]])
= v (a+ (w0 + b)r̄)

This was the payoff from the risk-free consumption strategy. Thus, it is optimal
to have risk free date-1 consumption.
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Section II

Question II.1

Suppose that there are S > 1 states of nature at date 1. There are I agents
whose preferences over state-contingent consumption plans are described by
expected utility functions

S∑
s=1

πsv
i(cis),

where cis denotes consumption in state s, πs is the strictly positive probability of
state s (common to all agents), and vi is the von Neumann-Morgenstern utility.
Suppose that utility functions vi have linear risk tolerance (or, equivalently,
hyperbolic risk aversion) with the same slope. There is no consumption at date
0.

The aggregate endowment is ω̄ = (ω̄1, . . . ω̄S) with ω̄s > 0 for every state s
and ω̄s 6= ω̄s′ for at least one pair of states s, s′.

Exercise (i). State a theorem asserting that agents’ consumption plans at every
Pareto optimal allocation lie in a two-dimensional subspace of the consumption
space RS . Be as general as you can. Prove the theorem you stated under
the additional assumption that utility functions have constant absolute risk
aversion.

Solution. He is looking specifically for the following theorem.

Theorem. If every agent has linear (affine) risk tolerance with the same slope,
then each agent’s consumption is an affine transformation of the aggregate en-
dowment in any Pareto optimal allocation.

Proof. I will prove it only for the case of CARA utility. Start with the planner’s
problem.

max
{cis}i,s

E

[
n∑
i=0

λi
(
−e−

cis
αi

)]

s.t.

n∑
j=0

cis = ω̄

The first order conditions are

λi
1

αi
e−

cis
αi =

µs
πs

for all agents i and states s, where µs are the multipliers on the constraints and
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πs. This implies the following.

λi
1

αi
e−

cis
αi = λj

1

αj
e−

c
j
s
αj

⇒ log

(
λi

αi

)
− cis
αi

= log

(
λj

αj

)
− cjs
αj

multiply by αj and sum over all the agents

⇒
n∑
j=0

[
αj log

(
λi

αi

)
− αj

αi
cis

]
=

n∑
j=0

[
αj log

(
λj

αj

)
− cjs

]

∑n
j=0 c

i = ω̄, and all the j’s sum out and there are no s’s other than on the
consumption. So you can write,

ci = Ai +Biω̄

Notice that Ai +Biω̄ is a two dimensional subspace of Rs.

Exercise (ii). Suppose that there are security markets. Markets may be in-
complete, but it is assumed that agents’ endowments and the risk-free payoff
lie in the asset span. Show that, in an equilibrium in security markets, every
security whose payoff is co-monotone with the aggregate endowment must have
expected return greater than or equal to the risk-free return.

Solution. First recall the following theorem from Jan Werner that I will state
without proof.

Theorem. If x and y are co-monotone, then Cov(x, y) ≥ 0.

Now recall from the theorem we stated in the previous part, that ci =
Ai + Biω̄ where ω̄ is the aggregate endowment/aggregate consumption. When

we proved this for CARA utility above, we got Bi = αi∑
j α

j > 0. In the more

general proof, we still get that Bi > 0. This means that each individual’s
consumption is (strictly) co-monotone with aggregate consumption.

Now let R be the return on some security that is co-monotone with the
aggregate endowment, and thus also co-monotone with each agent’s optimal
consumption. From the first order conditions, we can get the following.

1 = E
[
∂1v(c)

∂0v(c)
R

]
= E

[
∂1v(c)

∂0v(c)

]
[R] + Cov

(
∂1v(c)

∂0v(c)
, R

)
= RfE[R] +

Cov(∂1v(c), R)

E[∂0v(c)]
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⇒ E[R] = Rf −Rf Cov(∂1v(c), R)

E[∂0v(c)]

We have assumed that v is increasing and concave in c. So, E[∂0v(c)] is positive
and ∂1v(c) is negatively co-monotone with c. By the above theorem, this means
that Cov(−∂1v(c), R) ≥ 0.

Thus, E[R] ≥ Rf .
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Question II.2

Let R be a vector of random variables, interpreted as gross returns (i.e., unit
cost payoffs) and let ω be a set of weights that add up to one. Assume that
R contains a bond with constant returns Rf . Let m be a stochastic discount
factor that satisfies the Euler equation,

E[mω′R] = 1 ∀ω :
∑
i

ωi = 1.

Exercise (a). Derive the Hansen Jaggannathan volatility bound for m:

σ(m)

E[m]
≥ ‖E[ω′R−Rf ]‖

σ(ω′R)
∀ω :

∑
i

ωi = 1.

Solution. Starting from the Euler equation,

1 = E[mω′R]

⇒ 1 = E[m]E[ω′R] + Cov(m,ω′R)

⇒ E[ω′R]− 1

E[m]
= −Corr(m,ω′R)σ(m)σ(ω′R)

1

E[m]

⇒
∣∣E[ω′R−Rf ]

∣∣ = |Corr(m,ω′R)|σ(m)σ(ω′R)
1

E[m]

≤ σ(m)σ(ω′R)
1

E[m]

⇒ σ(m)

E[m]
≥
∣∣E[ω′R−Rf ]

∣∣
σ(ω′R)

Exercise (b). Derive the Bansal Lehmann bound for m:

−E[log(m)] ≥ E[log(ω′R)] ∀ω :
∑
i

ωi = 1.

Can you provide an economic interpretation of this bound? (Hint: Think from
a perspective of an agent who has log utility)

Solution. We start from the same Euler equation.

1 = E[mω′R]

⇒ 0 = log (E[mω′R])

≥ E[log(mω′R)]

= E[log(m)] + E[log(ω′R)]

⇒ − E[log(m)] ≥ E[log(ω′R)]
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For intuition, imagine an investor with log utility. Then,

−E[log(m)] = E
[
log

(
ct
ct+1

)]
= E

[
log

(
ct+1

ct

)]
.

Since ω′R is a return you can get on your wealth, we’ll give the following inter-
pretation. The Bansal Lehmann bound says that your expected growth rate on
consumption must be at least as large as your expected growth rate on wealth
(if you have log utility). More generally, we just have that the inverse of the ex-
pected growth rate of marginal utilities must be as large as the expected growth
rate on wealth.

Exercise (c). Suppose m, R were log normally distributed. Compare the two
bounds derived in (a) and (b).

Solution. The Bansal and Lehmann 1997 paper answers exactly this question,
but I don’t get it at all.
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Question II.3

Consider an aggregate consumption process of the following form

log(ct+1)− log(ct) = m+ xt + σtWc,t+1

xt+1 = axt + ϕσtWx,t+1

σ2
t+1 = σ2 + ν(σ2

t − σ2) + σwWw,t+1.

where 0 < α < 1 and Wc,t, Wx,t, Ww,t are standar Gaussian innovations,
mutually independent and i.i.d. over time.

Consider the following experiment: An agent with Epstein-Zin preferences,

Ut =
{

(1− β)cρ + β
[
Et[Uαt+1]

] ρ
α

} 1
ρ

,

faces the consumption stream described above for t = 1, 2, . . .. In particular
note that the riskiness of consumption resolves only gradually over time (ct, xt
are realized only at time t). How much would he pay at time 0 to have all risk
resolved in the next period? Assume intertemporal elasticity of substitution,
IES = 1,

Exercise (a). Derive an expression for U0.

Solution.

Exercise (b). Let U∗0 as the utility stream when all risk is resolved at t = 1.
Derive an expression for U∗0 . (Hint: Use backward induction logic: First derive
U∗1 for an agent who faces deterministic stream of consumption. Then use the
Epstein-Zin recursion to compute U∗0 be aggregating utility from c0 and U∗1 ).

Solution.

Exercise (c). Now compute the π∗ = 1− U0

U∗0
as the timing premium. Discuss

how it varies with parameters α, β, ϕ, σ2, ν.

Solution.
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Question II.4

Consider security markets with infinite time-horizon and uncertainty described
by an event tree with a finite number of events at every date t ≥ 1. There
are J infinitely-lived securities with dividends xj(st) ≥ 0 for every j and every
event st, every t ≥ 1. Let p(st) denote a vector of security prices in event
st. There are I agents and a single good available for consumption at every
date. Each agent i has strictly increasing preferences over infinite-time event-
contingent consumption plans, and event contingent endowment of the good at
every date t (denoted by ωit) and an initial portfolio of securities (denoted by

ĥi0 ∈ RJ+). Consumption is restricted to be positive. You may assume that
agents’ preferences have discounted expected-utility representation. Agents’
portfolio holdings h(st) at st are restricted by debt constraints of the form

[p(st+1) + x(st+1)]h(st) ≥ −D(st+1), ∀st+1 ⊂ st, ∀t ≥ 0,

where bounds {D(st+1)} are positive, and st+1 ⊂ st indicates that event st+1

is a successor of st.

Exercise (i). State a definition of an arbitrage under debt constraints and prove
that there does not exist arbitrage if and only if there exists strictly positive
event prices. You may use a characterization of no-arbitrage in static two period
markets without proof.

Solution.

Definition. An arbitrage under debt constraints is a portfolio strategy
h such that p0h0 ≤ 0, z(h, p)(st) ≥ 0 for every event st, at least one of the
inequalities is strict, and [p(st+1) + x(st+1)]h(st) ≥ 0.

Lemma. Security prices exclude arbitrage under debt constraints if and only if
they exclude one period arbitrage in every state.

Proof. The forward direction of the proof is immediate. If there is no arbitrage
under debt constraints, there cannot be a one period arbitrage. This is clear
because a one period arbitrage is an arbitrage under debt constraints.

Now the reverse direction. Assume there is no one period arbitrage. Take any
portfolio strategy h such that p0h0 ≤ 0, z(h, p)(st) ≥ 0, and [p(st)+x(st)]h(st) ≥
0. Note that any potential arbitrage must satisfy these conditions. We must
have that p0h0 and [p(s1) + x(s1)]h0 are zero for all s1, otherwise h0 would be
a one period arbitrage. Since z(h, p)(s1) ≥ 0 we must have that p(s1)h(s1) ≤ 0
and either they’re both strict or both equal to zero.

Now we can just repeat the same arguement for the next period. We continue
this iteratively through infinity. This shows that no h can be an arbitrage under
debt constraints.

Lemma. In the two period model there exists strictly positive event prices if
and only if security prices exclude arbitrage.
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Proof. Take X to be the payoff matrix in the two period model and p the price
vector.

Theorem. Stiemke’s Lemma There does not exist h ∈ Rm such that hX ≥ 0
and hp ≤ 0 with one strict inequality,
if and only if there exists q ∈ Rn such that p = Xq and q >> 0.

In the above theorem, h is an arbitrage and q is the event prices.

These two lemma’s together imply the result.

Exercise (ii). State a definition of price bubble. State a theorem providing
sufficient conditions for price bubbles being zero in equilibrium under debt con-
straints.

Solution.

Definition. A price bubble on security j at st is

σj(st) = pj(st)−
1

q(st)

∞∑
τ=t+1

∑
sτ⊂st

q(sτ )xj(sτ ).

Where pj(st) is the price of the security and q(st) is the event price.

Definition. Agents exhibit uniform impatience with respect to the effective
aggregate endowment ŵ if there exists γ satisfying 0 ≤ γ < 1 such that

ui(ci−(st), c
i(st) + ŵ, γci+(st)) > ui(ci)

for every i, every st, and every ci such that 0 ≤ ci ≤ ŵ.

Theorem. Assume that agents’ utility functions exhibit uniform impatience.
Suppose that (p, {ci, hi}) is an equilibrium in security markets under debt con-
straints and q is a sequence of strictly positive event prices associated with p. If
the present value of the aggregate endowment is finite,

∞∑
t=0

∑
st∈Ft

q(st)w̄(st) <∞

then the price bubble is zero for every security that is in strictly positive supply.

Exercise (iii). Give an example of an equilibrium with strictly positive price
bubbles on a security in strictly positive supply. The security can be zero-
dividend security (i.e. ”fiat money”). Sketch a proof that the prices and allo-
cations in your example are indeed an equilibrium for the utilities, endowments
and debt bounds that you specified.
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Solution. The example is two agent’s playing pitcher-catcher with a single dollar
bill. Imagine the following environment.

There are two agents with the following utility with 0 < δ < 1.

ui(c) =

∞∑
t=0

δt log(ct)

There is a zero debt constraint. Endowments are w0
t = H and w1

t = L if t is
even, and w0

t = L and w1
t = H if t is odd, and δH > L. There is a single

security that pays no dividends. The initial security holdings are h10 = 1 and
h00 = 0.

The following price and consumption streams constitute an equilibrium. Let
η = δH−L

1+δ . pt = η for all t. cit = H − η if wit = H and cit = L + η if wit = L.

hit = 1 if wit = H and hit = 0 if wit = L. We can quickly see that this is an
equilibrium by looking at the Euler equations. For the agent that is not debt
constrained,

δt

cit
pt =

δt+1

cit+1

pt+1.

For the constrained agent, the left side must be larger than the right side. Also,
the budget constraint must hold for each agent every period.

cit + pth
i
t ≤ wit + pth

i
t−1

Plugging in the proposed equilibrium values, we can quickly see that they satisfy
the conditions.

12


