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Some Info

These notes are pulled pretty much from two sources: 1) directly from Leroy and Werner’s Principles of Financial

Economics, Second Edition and 2) from the lectures notes and papers that correspond to Anmol Bhandari’s section

of the course. While the main notes and proofs focus on the two-date version of an asset market economy, most

proofs and theorems generalize almost perfectly to the multi-date or infinite-time economies. The reason for this

focus is that the intuition and math is easier to follow/instill. These notes (like the book) do not include more recent

material from the course on ambiguity, endogenous debt constraints, speculative trade and rational expectations

equilibrium, but this should be a sufficient introduction to foundational material for financial economies in discrete

time and discrete state space.
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1 Equilibirum in Security Markets

• Markets are complete if and only if the payoff matrix X is full rank.

• Security prices p are marginal utility-weighted dividends.

• Securities market equilibrium exists under mild conditions.

A security xj ∈ RS has payoffs in S states of nature. For an economy with J securities, define the J ×S matrix

X as the payoff matrix. Further, define a portfolio h as the J-vector, describing the amount of each security held

by the agent. The portfolio has a payoff hX =
∑J
j=1 hjxj ∈ RS . We can therefore define the asset span M as

M = {z ∈ RS : z = hX for some h ∈ RJ}.

Thus, the asset span consists of all possible payoffs an agent could achieve in the S states of nature. If M = RS ,

we say markets are complete; otherwise, they are incomplete.

Theorem. Markets are complete iff the payoff matrix X has a rank S.

Proof. If J < S, then there are an insufficient number of assets to span the space RS . If J > S, then there exists a

basis of S linearly independent rows that can replicate the remaining J −S; thus, WLOG consider a square matrix.

Given the columns are linearly independent, the matrix X has an inverse and h = X−1z maps back to a solution

for h for any point z.

Prices of the securities can be represented by the J-vector p and the price of a portfolio h is simply the inner

product ph. In a similar sense, the returns on a security j is simply
xj
pj

.

Consider an economy with a finite number I of agents with utility functions ui : RS+1
+ → R who have endowments

ωi. A securities market economy is one in which the agents’ endowments lie within the asset span. Consider the

agents problem

max
c0,c1,h

u(c0, c1(1), ..., c1(s)) (1)

s.t.c0 ≤ ω0 − ph

s.t.c1 ≤ ω1 + hX

where I make explicit the utility function over states. Further, notice the second constraint is a system of inequalities

for all states s = 1, 2, ..., S. After applying first-order conditions, we observe

pj =

S∑
s=1

xjs
u1,s

u0
; (2)

that is, the the price of an asset is equal to the weighted sum of its payoffs, where the weight is the marginal rate

of substitution in its corresponding state.

4



Financial Econ

Definition. A security markets equilibrium consists of a price vector p, portfolio choice hi, consumption allocation

{ci0, ci1} for each agent such that agents maximize their utility and markets clear:

1.
∑
i hi = 0

2.
∑
i c
i
j =

∑
i ω

i
j j = 0, 1.

Theorem. If each agent’s consumption plan is restricted to be positive, initial endowments strictly positive, a

portfolio with a positive, nonzero payoff exists, and utility functions are strictly increasing and quasi-concave, then

an equilibrium in security markets exists.
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2 Linear Pricing

• Define the payoff pricing functional q(z).

• q is linear (on the asset span M) if and only if the law of one price holds.

• Define state prices q ∈ RS , using Arrow securities. Observe relation between security prices p and q.

Definition. The law of one price states that if

hX = h∗X ⇒ ph = ph∗.

That is to say, if two portfolios attain the same point in the payoff space, then they must be the same price.

Proposition. The law of one price holds iff every portfolio with zero payoff has zero price.

Proof. (⇒): Suppose the Law of One Price holds. Further, suppose that hX = h̃X = 0 but ph = ph̃ > 0. Consider

a λ > 1. Then λhX = 0 still and ph 6= p(λh) which contradicts the law of one price.

(⇐): Suppose that for all portfolios h such that hX = 0, we have ph = 0. Consider portfolios h, h̃ such that

hX = h̃X but ph > ph̃. Then, we also observe

(h− h̃)X = h̄X = 0

but ph̄ > 0 which contradicts our assumption.

Definition. Given security prices p, define the payoff pricing functional q : M → R as a function that assigns a

price to each payoff in M⊆ RS; that is,

q(z) = {w : w = ph for some h such that z = hX} ∀z ∈M.

Obviously, if the law of one price holds, the payuoff pricing functional q must be single-valued.

Theorem. The law of one price holds iff q is a linear functional on the asset span M.

Proof. (⇒) : Assume that the Law of One Price holds. Note that this implies that q must be single-valued. Now,

consider two payoffs z = hX, z̃ = h̃X ∈M. For arbitrary λ, µ ∈ R we can generate λz+µz̃ with portfolio λh+µh̃.

The pricing functional is

q(λz + µz̃) =λph+ µph̃ (By Law One Price)

=λq(z) + µq(z̃)

which implies linearity.

(⇐): Suppose that q is a linear functional onM. Then, for any portfolio h, h̃ such that hX = h̃X we must have

q(hX) = q(h̃X).
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Theorem. If agents have strictly increasing utility functions, the law of one price will hold in equilibrium.

Proof. Given equilibrium prices p∗, suppose that the Law of One Price does not hold. Then, there exists a zero

payoff portfolio with negative price (i.e. an h such that hX = 0 and ph < 0). Thus, for any equilibrium plan

h∗, the agent can choose h̃ = h∗ + h along with consumption (c∗0 − p∗h, c∗1) which is budget feasible and increases

consumption. Since utility is strictly increasing in consumption, this strategy is preferable and thus h∗ cannot be

an equilibrium. A contradiction.

Now, if we have i) complete markets, we know the payoff pricing functional is unique and if ii) the law of one

price holds, the payoff pricing functional will be linear. Further, by assuming strictly increasing preferences, we

guarantee the law of one price to hold, in equilibrium. For Arrow securities which have a unit vector payoff es for

all states s = 1, 2, ..., S, we can recover the unique payoff price qs = q(es). Create the vector of Arrow-Debreu or

state prices q ∈ RS . Further, given linearity of the pricing functional, we can price every payoff with the vector q;

that is, for any payoff z ∈ RS , its price is

q(z) = qz =

S∑
s=1

qszs

is simply the inner product between the states prices and the payoff values. Further, the price of each security is

simply pj = qxj or in matrix notation,

p = Xq. (1)

Once again, we know q is unique because markets are complete, which means that the matrix X has rank S and

can be inverted (assuming no redundant securities exist). Thus, solving for state prices is solving the system of

equations in (1). In Section 1 equation (1), we setup and solved the agents utility maximizatino problem. We did

so by choosing consumption and a portfolio of assets. Now, we can recast that optimization problem as one of

choosing payoffs z instead of portfolios h:

max
c0,c1,z

u(c0, c1) (2)

s.t.c0 ≤ ω0 − qz

s.t.c1 ≤ ω1 + z.

Given strictly increasing utility, we have to maximize u(ω0 − qz, ω1(1) + z(1), ..., ω1(S) + z(S)) with respect to zs

for each possible payoff s = 1, 2, ..., S. The first-order conditions of this problem lead to qs = u1(s)
u0(s) for each state of

the world. Thus, coupled with Section 1 equation (2), we get

pj =

S∑
s=1

xj,s
u1,s

u0
=

S∑
s=1

xj,sqs = xjq. (3)

Thus, in a consumption-based model, the price of a security is its marginal utility-weighted dividends/payoffs and

this marginal utility ratio serves as the unique vector of state prices (given market completeness and law of one

price).
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3 Arbitrage and Positive Pricing

• q is linear and strictly positive if and only if there is no arbitrage.

• If agent preferences are strictly increasing, there cannot exist arbitrage in equilibrium; hence, q will be

linear and strictly positive, in equilibrium.

Definition. An arbitrage is a portfolio h such that ph ≤ 0 and hX ≥ 0 with one (or both) strict inequalities.

Proposition. The law of one price holds iff there does not exist an arbitrage.

Proof. Rely on zero payoff property of Law of One Price which states that

Law of One Price holds ⇐⇒
{
hX = 0⇒ ph = 0

}
⇐⇒ @ h such that hX = 0, ph < 0

which is the definition of an arbitrage.

Theorem. The payoff pricing functional q is linear and strictly positive iff there is no arbitrage.

Proof. (⇒) : Suppose the payoff pricing functional were strictly positive and linear. Further, suppose arbitrage

exists; that is, we have z = hX = 0 and ph < 0 which means

q(z) < 0⇒q · z < 0

⇒q(hX) < 0

which is a contradiction, given hX = 0. Remember, the zero payoff must have zero price under linearity/law of one

price.

(⇐) : Assume there exists no arbitrage. Now, consider the spaces

L =R× RS

M ={−q(z), z} ⊂ L

K =R+ × RS+ ⊂ L

for any payoff z ∈ RS . No arbitrage implies K ∩M = {0}. Given that both K and M are closed, convex spaces,

the Separating Hyperplane Theorem implies there exists a linear, nonzero functional F : RS+1 → R such that

F (k) = F ′k > F (m) = F ′m for all interior points k ∈ K and m ∈M .

It must be the case that F (m) = 0. To see this, suppose point m ∈ M were attained with portfolio h (i.e.

F (m) = F ′m = −F1q(hX) + F ′−1(hX) which is smaller than F ′k for all k ∈ K by the hyperplane theorem). The

set M includes all prices and payoffs attainable from any portfolio, so it must also include −h. Thus, we would

have F1q(hX)− F ′−1(hX) > F ′k for all k ∈ K which would contradict the hyperplane theorem.

Next, note that the linear functional used as the hyperplane is represented simply by the vector F ∈ R × RS .

Given that F (k) > F (m) = 0, and k is a strictly positive vector, it must be the case that F >> 0. Let’s define
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F = (α,ψ) where α is a scalar. Choose a payoff m with corresponding q(m) in M ; then,

F (m) = −αq(m) + ψ ·m = 0

which leads to q(m) = ψ
α ·m and thus we have the existence of a strictly positive payoff pricing functional.

Now, consider this within the context of a security market economy.

Theorem. If at any given price p, an agent’s optimal portofolio exists, and if the utility functions of the agents are

strictly increasing, then there does not exist an arbitrage.

Further, if at given security prices there is no arbitrage and agent consumption is restricted to be positive, then

there exists an optimal portofolio.

Theorem. If agent utility functions are strictly increasing, then there is no arbitrage at equilibrium security prices

and the equilibrium payoff pricing functional is linear and strictly positive.
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4 Valuation

• Define the valuation functional Q(z) and construct it from q(z).

• Security prices exclude arbitrage if and only if there exists a strictly positive Q.

• Given no arbitrage, security markets are complete if and only if there exists a unique, strictly positive

Q.

Consider cases in which markets are not complete. The payoff pricing functional is defined with a domain in the

asset span. We can define the valuation functional Q : RS → R which is a linear functional on the entire space RS

with the restriction that

Q(z) = q(z)

for all payoffs within the asset span. So, the valuation functional coincides with the payoff functional on the asset

span and can also price payoffs on the larger contingent claim space RS .

Now, in the case of incomplete markets, let’s show how the valuation functional can be constructed/extended

from the underlying payoff pricing functional. Essentially, we will start with a payoff pricing functional q which

only spans S − J dimensions, find a payoff ẑ not in the span and then define a new operator to include this new

payoff. First, define bounds on the payoff pricing functional

qu(z) =min
h
{ph : hX ≥ z}

ql(z) =max
h
{ph : hx ≤ z}

for all z ∈ RS . We have the following result for these functionals within the asset span.

Proposition. If security prices exclude arbitrage,

qu(z) = ql(z) = q(z).

This just states that we have uniqueness of the price of a payoff when we consider payoffs in the asset span.

Further, it markets are complete, then the asset span is the space RS and we once again have uniqueness such that

Q(z) = q(z) for all z ∈ RS . Now, consider the following proposition for payoffs outside the asset span.

Proposition. If security prices exclude arbitrage, then

qu(z) > ql(z) ∀z /∈M.

So, (given no arbitrage) for any given set of security prices, we know that there exists a unique payoff pricing

functional within the asset span; but, when we consider payoffs outside the span, we allow for the possibility of a

range of values. To illustrate this result, consider the example on the next page.
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Example. Consider two securities

x1 =(1, 1, 1)

x2 =(1, 2, 4)

such that we have J < S. Suppose market prices are (p1, p2) = ( 1
2 , 1). A call option with strike price 3 on asset x2

has the payoff c(k = 3) = (0, 0, 1). We can show that c(k = 3) is not in the asset span. So, let’s compute an interval

of permissible payoff prices for the portfolio, using ql and qu, which correspond to the call option payoff, labelled c3.

ql(c3) =max
h1,h2

1

2
h1 + h2

s.t.h1 + h2 ≤ 0

s.t.h1 + 2h2 ≤ 0

s.t.h1 + 4h2 ≤ 1

where the constraints are simply the requirement h1x1 + h2x2 ≤ c3, written in form of system of equations. Solve

this and we get ql(c3) = 0.

Now, consider the other problem

qu(c3) =min
h1,h2

1

2
h1 + h2

s.t.h1 + h2 ≥ 0

s.t.h1 + 2h2 ≥ 0

s.t.h1 + 4h2 ≥ 1

which leads to qu(c3) = 1
6 . Thus, we obtain all possible permissible prices q(c3) ∈ [0, 1

6 ] to price the call option with

strike price 3.

Now, construct Q in the following way: consider the asset span M ∈ RS−J ⊂ RS . Choose a payoff ẑ /∈ M.

Define the space

N = {z + λẑ : z ∈M and λ ∈ R}

which is in the space RS−J+1 and is thus the span{x1, ..., xJ , ẑ}. Choose any scalar π such that ql(ẑ) ≤ π ≤ qu(ẑ)

(where these functionals have domain M). Now, define the valuation functional Q : N → R as

Q(z + λẑ) = q(z) + λπ.

Keep repeating this process until we have a space N of dimension S. Then you’re done.
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Proposition. If q :M→ R is strictly positive, then Q : N → R is strictly positive.

Now, we restate a couple theorems from the previous section in terms of the valuation functional.

Theorem. The First Fundamental Theorem of Finance states that security prices exclude arbitrage iff there exists

a strictly positive valuation functional.

Proof. (⇒) : We know from previous theorem that no arbitrage implies a strictly positive payoff pricing functional

q on the asset span M. From the last proposition, a strictly positive q with no arbitrage implies a strictly positive

Q.

(⇐) : We know that a strictly positive valuation functional implies a strictly positive payoff functional, by

definition. Thus, from our previous theorem, there cannot be arbitrage with security prices p.

Theorem. Suppose security prices exclude arbitrage. Then security markets are complete iff there exists a unique

strictly positive valuation functional.

Proof. (⇒) : If security markets are complete, we know that the payoff pricing functional is unique on the asset

span M which is RS . Thus, Q(z) = q(z) ∀z ∈ RS .

(⇐) : Assume we have a unique strictly positive valuation functional. Suppose markets are not complete. Then

M ⊂ RS and for any payoff ẑ /∈ M, we have ql(z) < qu(z). Recall, we construct the valuation functional from

q by choosing an element ẑ /∈ Mwith values define by Q(z + λẑ) = q(z) + λπ where we choose π. Given that

π ∈ [ql(ẑ), qu(ẑ)] comes from a non-degenerate interval, we can have multiple values of the valuation functional. A

contradiction.
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5 State Prices and Risk-Neutral Probabilities

• The risk free return r̄ is the inverse of the sum of state prices qs.

• Define a risk-neutral probability measure π∗.

• The price of a portfolio, attaining payoff z, is its discounted, expected value under the π∗-measure.

• For any asset E∗[r] = r̄ under the π∗-measure.

Just like we did for state prices in complete markets with q(es) = qs, we can identify the valuation functional

by Q(es) = qs for the basis vectors es. Given linearity of the valuation functional, we have

Q(z) = qz

and this is called the state-price representation of the valuation functional Q.1 Further, we know we can derive the

system of equations

p = Xq

such that state prices are a solution to the system of J equations with S unknowns.

Theorem. There exists a strictly positive valuation functional iff there exists a strictly positive solution to p = Xq.

Proof. (⇒):If we have a strictly positive valuation functional, we can use the basis functions to construct a strictly

positive q that satisfies p = Xq, as was shown above.

(⇐): If there exists a strictly positive solution q to the matrix equation, then define a strictly linear operator

Q(z) = qz. Then, for any payoff z ∈ RS , there exists a portfolio h such that z = hX and we write

Q(z) = q(hX) = ph

which prices the the payoff and corresponding portfolio. Thus, Q(z) is a well-defined valuation functional and is

strictly positive.

Consider a payoff that does not depend on the state of the world s. Such a payoff is risk free. Consider a

non-zero payoff k that is risk-free (i.e. it’s payoff vector is (k, k, ..., k)′). Then, it has the risk-free return r̄ of

r̄ =
k∑
s qsk

=
1∑
s qs

. (1)

Thus, the inverse of the sum of state (Arrow-Debreu) prices gives the risk-free return. Now, define a risk-neutral

probability π∗s = r̄qs such that

π∗s = r̄qs =
qs∑
s qs

(2)

is just a re-scaling of the state prices. Further, π∗ is a probability measure. Given this, we can consider the expected

value of a payoff z. We could multiply r̄
r̄ to the valuation functional of a payoff z:

r̄

r̄
Q(z) =

1

r̄

∑
s

r̄qszs =
1

r̄

∑
s

π∗szs =
1

r̄
E∗[z]. (3)

1I’m using the same vector notation q instead of Q because often times we will be assuming complete markets, in which case

Q(z) = q(z) for all contingent payoffs z so we just stick to the standard state price vector q.
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Thus, (3) states that the price of a portfolio attaining a payoff z ∈ RS is the discounted expected value of the payoff,

with respect to the risk-neutral probabilities. Further, given we know that pj = qxj , we get

pj =
∑
s

xj,sqs =
1

r̄
E∗[xj ] (4)

which also implies r̄ = E∗[rj ] for all assets j = 1, 2, ..., J .2 That is, the expected return (under the risk-neutral

measure) of any asset is equal to the risk-free return. This is the sense in which we use the world neutral.

2There is a key decomposition to take away from equation (4). While the consumption-based model we have thus far considered

doesn’t explicitly include randomness, it easily could. We would then have a natural probability measure π over possible states

of the world tomorrow. Recall from Section 1 equation (1), equilibrium security prices are determined via pj =
∑
s
u1,s

u0
xj,s or

pj =
∑
s
π1,s

π0

u1,s

u0
xj,s if randomness were modeled. Thus, the pricing of an asset depends upon its natural probability distribution of

dividends/payoffs and also the consumer’s marginal rate of substitution with respect to each state s. If we used power utility functions,

then the parameter σ would capture the consumer’s aversion to risk, depending on how large it was set. So, prices are the product

of both i) agent beliefs about π and ii) agent attitude towards risk, via σ. When we switch to a risk-netrual measure π∗, we embed

the agent’s risk attitude inside the probability measure so that prices are simply calculated as a discounted expectation. If we observe

dividends and prices in the data, we can calculate π∗; what is π and σ? That is the tougher question.
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6 Optimal Portfolios with Multiple Risky Securities

• The agent problem of choosing consumption and a portfolio (c, h) is recast as one of choosing amounts

of wealth aj invested in asset j

Consider the portfolio choice problem

max
c1,h

E[v(c1)]

s.t. ph = ω0

s.t. c1 = ω1 + hX

This is the same problem as Section 1, but here the agent postpones consumption at date 0 and only considers

consumption at date 1. Define ĥ as a portfolio such that ω1 = ĥX. Then the second constraint is written

c1 = (ĥ+ h)X. Thus, define aj as the amount of wealth invested in security j, written

aj = pj(ĥj + hj)

and re-write the date 1 budget constraint as

c1 =
∑
j

ajxj
pj

=
∑
j

ajrj .

This says that your consumption is equal to the returns of all the assets, scaled by the amount you invested in each

asset. Now, the maximization problem can be re-stated as

max
{aj}

E[v(
∑
j

ajrj)]

s.t.
∑
j

aj = ω

where ω is defined as agent’s total wealth ω0 + pĥ. Say we have a risk-free security (without loss of generality,

security 1), then we can substitute for a1 and write the problem as

max
a2,...,aJ

E[v(ωr̄ +

J∑
j=2

aj(rj − r̄)].

In the case of just a risk-free security and one risky security, we have the first-order condition

E[v′
(
ωr̄ + a∗(r − r̄)

)
(r − r̄)] = 0.
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7 Consumption-Based Security Pricing

• Equilibrium conditions provide r̄ = E[v0v1 ].

• The consumption-based security pricing formula is derived.

• The Hansen-Jagannathan bounds are derived.

In general for a securities market economy with randomness, we have the equilibrium condition

pjv0 = E[v1xj ] (1)

for a security j, which can be written v0 = E[v1rj ]; thus, if there is a risk-free security, we observe

r̄ = E[
v0

v1
] = E0[

∂v(c)
∂c1
∂v(c)
∂c0

]. (2)

Recall that the marginal rate of substitution v1/v0 served as the payoff pricing functional q for an asset. Thus, the

inverse of the risk-free rate r̄ serves as a vector of state prices for equilibrium prices p∗ (i.e. 1
r̄ = E[v1v0 ] = E[q]).

This follows from market completeness whereby the agent will equalize his expected marginal rate of substitution

across all states.

Use the covariance formula decomposition to write

v0 =E[v1r]

=cov(v1, r) + E[v1]E[r]

⇒E[r] =
v0

E[v1]
− cov(v1, r)

E[v1]

⇒E[r]− r̄ = −r̄ cov(v1, r)

v0
(3)

where the last line follows from (2). Equation (3) is called the consumption-based security pricing formula. It states

that the excess return of a risky asset is proportional to the covariance of its returns with marginal utility at date 1.

For example, consider a strictly increasing and concave utility function. If state s consumption cs is high and return

rs is high, then we have low v1(cs) and a therefore negative covariance, implying a positive risk premium. Agents

have high demand for an asset if it pays out when times are bad; this asset, pays out large when consumption is

large and pays out low when consumption is low which is not ideal. Therefore, to hold it, the investor must be

compensated for the risk with a positive premium.

Definition. Two contingent claims y and z are co-monotone if (ys − yt)(zs − zt) ≥ 0 for all states s and t.

Proposition. If random variables y and z are co-monotone, then cov(y,z) ≥ 0.
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Theorem. If an agent is risk averse, then expected return E[r] is greater than the risk-free return r̄ for every return

r that is co-monotone with optimal consumption.

Proof. Risk aversion implies a strictly increasing and strictly concave utility function; that is,

u′(c) > 0 and u′′(c) < 0 ∀c.

Further, given that c∗ is co-monotnone with return r, we know that cov(r, c∗) > 0. High returns r correspond to

high consumption c∗ which corresponds to low marginal utility ∂v
∂c∗ ; therefore,

−r̄
cov( ∂v∂c∗1

, r)

∂v
∂c∗0

> 0

and the corresponding consumption-based security pricing formula shows positive excess returns.

Using the fact that v0 = E[v1r] and r̄ = v0
E[v1] , we have

E[v1(r − r̄)] = 0. (4)

Note that the correlation ρ between v1 and r − r̄ can be written

ρ =
E[v1(r − r̄)]− E[v1]E[r − r̄]

σ(v1)σ(r)

=− E[v1]E[r − r̄]
σ(v1)σ(r)

(From 4)

⇒|σ(v1)ρ| = |E[v1]E[r − r̄]|
σ(r)

⇒ σ(v1)

E(v1)
≥ |E[r]− r̄|

σ(r)
(From |ρ| ≤ 1)

⇒
σ( v1v0 )

E( v1v0 )
≥ |E[r]− r̄|

σ(r)

because v0 is occurs at the present and therefore has no variance or uncertainty. Let’s simplify notation and define

state price vector q = v1
v0

on the RHS above. Given that this holds for all risky securities, we have the result:

σ(q)

E[q]
≥ sup

r

|E[r]− r̄|
σ(r)

(5)

The RHS of equation (5) is called a Sharpe-ratio and is the excess expected return of a security, normalized by

its volatility. Equation (5) is called the Hansen-Jagannathan bounds for the state prices (or stochastic discount

factor). Given data on prices and dividends, we can found permissible values for parameters used in the agent

utility function.
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8 The Expectations and Pricing Kernels

• Introduce the pricing kernel kq as another representation of the payoff pricing function q(z) = E[kqz],

with respect to some measure π.

• The Riesz Representation theorem implies kq is unique on the asset span M.

• Define a stochastic discount factor (SDF) m ∈ RS and show kq is the unique projection of all m onto

M.

Recall that the inner product is a function that maps from a H×H into the reals, where H is some vector space.

Inner products are symmetric, linear and strictly positive when applied to the same element of H. Represent the

inner product between x and y as x · y. Given an inner product, we can define the norm of a vector in H as

||x|| =
√
x · x

which is an operator that satisfies i) the triangle inequality and ii) the Cauchy-Schwartz inequality.

Definition. A Hilbert space is a vector space H which is equipped with an inner product and complete with respect

to the norm induced by its inner product.

Completeness of a space means that if there is a Cauchy sequence in the space which converges, then the point

of convergence is also in the space.

Definition. Two vectors x, y ∈ H are orthogonal (denoted x ⊥ y) if and only if their inner product is zero; that is,

x ⊥ y iff x · y = 0.

If we have a collection of vectors {zi}ni=1 in a Hilbert space that are all orthogonal to one another, then we

call this an orthonormal system. This orthonormal system makes up an orthonormal basis for its linear span. Any

orthonormal system (of nonzero vectors) is linearly independent; that is, no one vector zi can be replicated by linear

combinations of vectors zj with j 6= i. Now, on to orhogonality with respect to subspaces of the Hilbert space.

Definition. A vector x ∈ H is orthogonal to a linear subspace Z ⊂ H if and only if x is orthogonal to every vector

z ∈ Z.

Further, the set of vectors x which are orthogonal to the subspace Z is called the orthogonal complement of Z

and denoted as Z⊥. It, too, is a linear subspace of H.
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Theorem. For any subspace Z of Hilbert space H and a vector x ∈ H, ∃ a unique vector xZ ∈ Z and xZ
⊥ ∈ Z⊥

such that x = xZ + xZ
⊥

.

Proof. Let {z1, ..., zn} be an orthogonal basis for Z where zi ∈ Rdim(Z) for all i = 1, 2, ..., n. Define vector

xZ =

n∑
i=1

x · zi
zi · zi

zi (1)

and the vector y = x − xZ . Because xZ is a linear combination of the orthogonal basis vectors, it is itself in Z.

Further, we can compute

y · zj =(x−
n∑
i=1

x · zi
zi · zi

zi) · zj

=x · zj −
∑
i6=j

x · zi
zi · zi

zi · zj − x · zj

=0 ∀j

because zi · zj = 0 for all i 6= j. Therefore, y is orthogonal to Z and we write y ∈ Z⊥.

We’ve shown that we can decompose a point x into a Z component plus a Z⊥ component. Let’s now prove

uniqueness. Suppose x = xZ1 + y1 = xZ2 + y2 for zZ1 , z
Z
2 ∈ Z and y1, y2 in the complement space. Applying

Pythageron’s theorem, we observe

||y1||2 =||xZ2 − xZ1 ||2 + ||y2||2

||y2||2 =||xZ1 − xZ2 ||2 + ||y1||2

From these equations, and given that norms are non-negative and symmetric, it must be that ||y1|| = ||y2|| which

implies ||xZ1 − xZ2 ||2 = 0; thus, the points must be the same and we have uniqueness.

So, any vector can be decomposed into two components (with respect to a subspace Z) and these components

are orthogonal to one another. Further, the Hilbert space can be written as H = Z + Z⊥ where Z ∩ Z⊥ = {0}.

Thus, for a particular x, xZ is an orthogonal projection of x onto the subspace Z. Along with the orthogonal basis

z for the space Z, it can be represented as

xZ =

n∑
i=1

x · zi
zi · zi

zi

=

n∑
i=1

E[xzi]

E[z2
i ]
zi

where the last line follows if we define the expectation operator E[xz] as the inner product for the space H. Thus,

this projection is the same as the linear regression of x on the basis zi’s. This is the ”predictable” part of x when

being restricted to the space Z.
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Taking Stock: In Section 2, we showed a representation of the payoff pricing function q(z) via state prices

(i.e. q(z) = qz where vector q was found from pricing Arrow securities). In Section 5 equation (3), we showed a

representation of the payoff pricing function as a discounted expectation with respect to risk-neutral probabilities.

The following Riesz Representation theorem provides yet another representation of q(z) but also proves uniqueness

and restricts the associated pricing kernel kq to the asset span M.

Theorem. The Riesz Representation theorem states that if F : H → R is a continuous, linear functional on the

Hilbert space, then there exists a unique vector kf ∈ H such that

F (x) = kf · x ∀x ∈ H. (2)

For a space RS , we can find the unique kernel kf by kf,s = F (es) for basis vectors es ∈ RS and for all

s = 1, 2, ..., S. Then, for any point x, we have F (x) = kfx. Further, we have F (x) =
∑
s πs

kf,s
πs
xs = E[kfx] for an

expectations representation and some probability measure π.

Now, within the context of asset pricing, we will consider the Hilbert space RS and the asset span M which is

a linear subspace of RS . The two functionals of interest in this space are the expectations functional and the payoff

pricing functional q(z). When we use probability measure π, consider this the objective probability distribution for

states of the world or agent’s subjective beliefs.

Definition. The expectations functional E maps a payoff z ∈M into its expected values E[z].3

Thus, the Riesz kernel associated with the expectations functional is the unique vector ke such that E(z) = E[kez]

for all payoffs z in the asset span M where ke is also in the asset span.4

Example. Consider two securities with payoffs in R3:

x1 =(1, 1, 0)

x2 =(0, 1, 1)

where we have a uniform probability of 1/3 for each state. Thus, an expectation kernel must satisfy

2

3
=E[kex1]

2

3
=E[kex2].

The kernel lies in the asset span, so we have ke = h1x1 + h2x2 must hold. Thus, viewing ke as an asset, it has

payoffs (h1, h1 + h2, h2). This leads to a unique solution ke = ( 2
3 ,

4
3 ,

2
3 ).

3We are assuming some underlying probability measure dictates the distribution of payoffs/states.
4Notice that if the risk-free payoff (of say 1) is in the asset span, then ke = 1.
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Definition. For the payoff pricing functional q on the asset span, the associated Riesz kernel is kq which is a unique

payoff in M satisfying

q(z) = E[kqz] ∀z ∈M. (3)

Call kq the pricing kernel in the asset span. Recall, if there is no arbitrage, we can derive strictly positive state

prices q such that the payoff pricing function is

q(z) =
∑
s

qszs

=E[
q

π
z]

for some measure π and any payoff z in the asset span. This implies (along with equation 3),

E[(
q

π
− kq)z = 0

and shows that kq is the unique orthogonal projection of q
π onto the asset span M.

Definition. Any contingent claim m ∈ RS that satisfies q(z) = E[mz] for all z ∈M is called a stochastic discount

factor.

Non-exhaustive examples of stochastic discount factors include the pricing kernel kq, agent marginal rate of

substitution v1
v0

and re-scaled state prices q
π . The pricing kernel differs from these in that it is unique with respect

to lying in the asset span M. Thus, when markets are incomplete, there can exist many state price vectors q

and stochastic discount factors m̃ which will all map (via an orthogonal projection) to unique kq. If markets are

complete, then kq = q
π = v1

v0
.

Lastly, if there is a risk-free payoff in the asset span, then

E[kq] = E[kqke] =
1

r̄
. (4)

The first equality follows from the expectations functional being applied to kq. The last equality is a general result

from the payoff pricing functional: For risk-free payoff a, we have q(a) = E[kqa] ⇒ q(a)
a = E[kq] where r̄ = a

q(a) is

a risk-free return by definition.
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9 The Mean-Variance Frontier Payoffs

• A mean-variance frontier payoff lies in the span of {ke, kq}.

• The standard deviation of agent MRS must be greater than or equal to σ(kq).

• Derive the Beta pricing model.

Definition. A payoff z is a mean-variance frontier payoff if for all other payoffs x where i) q(z) = q(x) and ii)

E[z] = E[x] we observe σ(x) > σ(z).

For any price and mean combination, a mean-variance frontier payoff is the one with least variance. Let’s define

E as the span between the kernels kq and ke. It is therefore a subspace of the asset span M, given that the kernels

both lie in the asset span.

Theorem. A payoff is a mean-variance frontier payoff iff it lies in the span of the expectations kernel and the

pricing kernel.

Proof. (⇐) : Consider any payoff z ∈ M in the asset span. It’s orthogonal projection onto the kernel span E is

decomposed as

z = zE + ε

where zE ∈ E and ε ∈ E⊥. Given this, we know ε ⊥ kq, ke; that is, the residual component is orthogonal to both

the pricing and expectations kernel. This further implies

E[keε] =E[ε] = 0

q(ε) =E[kqε] = 0

so that from the decomposition of z, we observe

E[z] =E[zE ]

q(z) =q(zE).

We know cov(ε, zE) = 0 so that

var(z) =var(zE) + var(ε)

⇒var(z) ≥ var(zE).

Thus, take any zE in the kernel span E . All other payoffs with the same expectation and price have a higher

variance, given the decomposition above.
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(⇒) : Do proof by contradiction. Suppose we have a payoff z such that there does not exist a z′ with

q(z) =q(z′)

E[z] =E[z′]

var(z) >var(z′)

but z /∈ E . Then, z can be decomposed into z = zE + ε. Through the same procedure as was done in the (⇐)

direction, we can show z is not a mean-variance payoff; hence, a contradiction.

Define frontier returns as frontier payoffs divided by their price. Another way of thinking about this is that

frontier returns are frontier payoffs with a price of 1. The returns re and rq corresponding to the return on ke and

kq are by construction frontier returns. They are

re =
ke
q(ke)

=
ke

E[kekq]
=

ke
E[kq]

(1)

rq =
kq
q(kq)

=
kq

E[k2
q ]

(2)

where (1) comes from (4) in Section 8. We know that if a payoff is on the frontier, it is in the span of the kernels.

Equivalently, if a return is on the frontier, it is a line passing through the returns (re, rq) which cab be indexed by

scalar λ and written

rλ = λre + (1− λ)rq forλ ∈ (−∞,+∞). (3)

Re-write this as rλ = re + λ(rq − re) and note that

E[rλ] =E[re] + λ(E[rq]− E[re])

var(rλ) =var(re) + λ2var(rq − re) + 2λcov(re, rq − re).

Claim. If the risk-free rate is in the asset span, then re = r̄.

Proof. If a risk-free payoff (say WLOG 1) is in the asset span, then we know from Section 8 equation (4), E[kq] = 1
r̄ .

Further, using the expectations functional on the risk-free payoff 1, we have

E[1] = E[ke1]⇒ E[ke] = 1.

ke,s = 1 ∀s satisfies this equation, and given that the expectations kernel is unique on M, ke = 1 is the only

solution. Now, use equation (1) to arrive at

re =
ke

E[kekq]

=
1

E[kq]
(From last result)

=r̄.
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Thus, under the assumption of a risk-free rate r̄ in the asset span, re-write equation (3) as

rλ = r̄ + λ(rq − r̄) ∀z ∈ (−∞,∞). (4)

Claim. Given the risk-free payoff is in the asset span, r̄ > E[rq].

Proof. Using the variance formula, we have

E[k2
q ] =E[kq]

2 + var(kq) (5)

<E[kq]
2

because the variance is non-zero for the pricing kernel. Next, take expectations of equation (2),

E[rq] =E

[
kq

E[k2
q ]

]
<
E[kq]

E[kq]2
(From (5))

=r̄. (Equation (4) Section 8)

What to take away from this? Using frontier returns with (4), and in the
(
E[rλ], λ

)
plane, the intercept is at

E[re] and the function is decreasing in λ.

Observation. Given the risk-free payoff is in the asset span, frontier returns rλ as in equation (4) have variance

var(rλ) = λ2var(rq) with standard deviation σ(rλ) = |λ|σ(rq).

What to take away from this? Using frontier return formula (4), and in the
(
λ, σ(r)

)
plane, At λ = 0, we have

r0 = r̄ and this is the minimum variance point with σ(r0) = 0. As we increase λ (in negative and positive directions),

we get symmetric, increasing lines from the origin. The positive direction is the ”bad” direction because it not only

increases variance but lowers expected returns. Thus, when we move to the classic
(
E[rλ], σ(rλ)

)
representation of

the mean-variance frontier, there are two frontier points with the same standard deviation, but the higher one is

the efficient/“negative λ” one!

Thus, when looking at the relation

σ(
v1

v0
) ≥ sup

r

|E[r]− r̄|
r̄σ(r)

from Section 7, we can show that this supremum must be a frontier return

Proposition. If r is a frontier return, it must achieve the supremum Sharpe ratio.

Making use of the properties that rq = kq/E[k2
q ] and r̄ = 1/E[kq], we have from the HJ bounds of section 7,

σ(
v1

v0
) ≥|E[rq]− r̄|

r̄σ(rq)

=
|E[kq ]
E[k2q ] −

1
E[k1] |

σ(kq)
E[kq]E[k2

q ]

=σ(kq).
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This result states that an agent’s standard deviation of marginal rate of substitution must be larger than the

standard deviation of the pricing kernel. After specifying a utility function and using consumption data, this allows

us to test restrictions on the values of preference parameters.

9.1 Beta Pricing

When the risk-free return is in the asset span, it obviously has zero covariance with a return r̄. It can be shown

that for any rγ on the frontier there exists an rµ on the frontier that has zero-covariance with rγ . You can use these

two returns as the span for E instead of (re, rq). Thus, if you have some return rj , it can be projected onto the

plane of frontier payoffs E and is decomposed as

rj = rEj + εj (6)

where rEj ∈ E and εj ∈ E⊥. Because it is a projection, εj is orthogonal to both kernels and therefore has zero price.

Thus, using returns rγ and rµ to describe the frontier line, we can write the return in the form of (4) as

rj =rµ + βj(rγ − rµ) + εj

⇒E[rj ] = E[rµ] + βj(E[rγ ]− E[rµ]). (7)

Of course, if we use the risk-free return r̄ = rµ, this equation is written

E[rj ] = r̄ + βj(E[rγ ]− r̄) (8)

and taking the covariance of (7) (subbing r̄ = rµ) with respect to rγ , we get

cov(rj , rγ) =cov(r̄, rγ) + βjcov(rγ − r̄, rγ) + cov(εj , rγ)

=βjcov(rγ − r̄, rγ)

⇒ βj =
cov(rj , rγ)

var(rγ)
(9)

because rγ is uncorrelated with εj and r̄. Therefore, we get

E[rj ] = r̄ + βj(E[rγ ]− r̄) (10)

where the β coefficient is from the linear regression of return rj on return rγ . This states that the risk-premium

on a security j is proportional to premium of a frontier return rγ and is scaled by the assets covariance with the

frontier return. In many circumstances, we can think of the frontier return rγ as the return of the market rm or

some index for the overall performance of the stock market.
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10 Equilibrium in a Multidate Security Markets

• Define a multidate securities economy and its competitive equilibrium.

Now, we expand our analysis to the case of an economy taking place at T ≥ 2 dates (but still a finite number).

Let there be multiple dates t = 0, 1, ..., T and a securities economy with J securities. These securities pay out

non-negative dividends xj(st) and carry the price pj(st) in the event st at date t. An agent can hold a quantity

hj(st) of security j at date t. We call h = (h0, h1, ..., hT ) a portfolio strategy where ht is a S×J dimensional object

because it specifies the holdings of each of the J securities in any of the S possible events at date t. The gross payoff

of a portfolio at date t is
(
p(st) + x(st)

)
h(st−1). Further, net a payoff is written

z(h, p)(st) = (p(st) + x(st))h(st−1)− p(st)h(st) ∀st, t (1)

and is the gross payoff, less the cost of buying a new portfolio.5 Define the asset span as

M(p) = {(z1, ..., zT ) ∈ RT×S : zt = zt(h, p) for some h, and all t ≥ 1}. (2)

A couple things to note. The asset span is a function of the price vector across all future dates. Previously, the

asset span only depended upon the exogenous process for payoffs in the matrix X; now, the span depends upon the

vector of securities prices. Further, like the one-date model, at each date t, there are (WLOG) a set of S possible

states of the world. Thus, the asset span includes all the possible states of the world at time t and for all times

t = 0, 1, ..., T and is thus a S × T dimensional object.

Definition. Security markets are dynamically complete at the prices p if any consumption plan over future dates

can be obtained as the payoff of a portfolio strategy (i.e. M(p) = Rk where k = S × T ). If instead M(p) is a subset

of RK , then we say markets are incomplete.

An agent problem in this setup can be written

max
c,h

u(c) (3)

s.t.c(s0) = ω(s0)− p(s0)h(s0)

s.t.c(st) = ω(st) + z(h, p)(st) ∀st,∀t.

If we attach a multiplier λ to the budget constraint, we have the first-order condition

λtpt =
∑

st+1|st

[pt+1 + xt+1]λt+1 ∀st (4)

where I’ve suppresed the s notation. Further, we observe λt = uc(t); thus, combine conditions to arrive at

pt =
∑

st+1|st

[pt+1 + xt+1]
uc(t+ 1)

uc(t)
. (5)

5When we write zt(h, p), we are referring to the S-vector of net payoffs for any realization st at date t. Further, z(h, p) is an S × T

object. Also, keep track of the dimensionality of the price vector p which has the price of J assets in T time periods over S possible

states of the world for each t.
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Definition. An equilibrium in multidate security markets consists of security prices p, a set of portfolio strategies

{hi}, a consumption plan {ci} for agents i = 1, 2, ..., I such that, given prices,

1. (ci, hi) solve the agent’s problem

2. Markets clear

a.
∑
i h

i(st) = 0 ∀st, t

b.
∑
i c
i(sT ) =

∑
i ω

i(st) ∀st, t
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11 Multidate Arbitrage and Positivity

• Define a payoff pricing functional q(z) and notion of arbitrage in multidate security markets.

• Given the Law of One Price, q(z) is single-valued and linear.

• q(z) is strictly positive if and only if there doesn’t exist arbitrage.

Definition. The Law of One Price states that

if z(h, p) = z(h′, p)⇒ p0h0 = p0h
′
0.

This states that, at given prices p, if two portfolios h and h̃ guarantee the same payoff z ∈ RS , both portfolios

must have the same date 0 price (p0h0) where p0, h0 ∈ RJ .

Proposition. The Law of One Price holds iff for every portfolio h with z(h, p) = 0, we observe p0h0 = 0.

Proof. This is an analogue theorem and proof for the two-date model in which the law of one price holds if and

only if a strategy h with payoff vector z = 0 has price ph = 0.

Define the payoff pricing functional q :M→ R as

q(z) = {w : w = p0h0 for all h with z = z(h, p)} ∀z ∈M. (1)

So, given a payoff z ∈ RS×T , q(·) will provide the prices of all portfolios that possibly could generate this payoff.

“Prices” because q could potentially be a correspondence. Given the Law of One Price, the payoff pricing functional

is single-valued and hence linear on the asset spanM. Take note: if you buy a security at date 0 and hold it for all

time, it generates the payoffs xj(st); therefore, the dividend stream is in the asset span and is therefore priced by

q. In particular, for xj ∈M, q(xj) = pj0.

Definition. An arbitrage is a portfolio h that has z(h, p) ≥ 0 and p0h0 ≤ 0 with one or both inequalities strict.

Theorem. The payoff pricing functional q is strictly positive iff there does not exist arbitrage.

Proof. No arbitrage here means p0h0 > 0 whenever z(h, p) > 0. Further, note that pricing the payoff reveals

q(z(h, p)) = p0h0. Thus, no arbitrage precisely corresponds to q′s being a stritly positive vector with respect to the

asset span M(p).

Definition. We can define a one-period arbitrage at event st as a date-t portfolio h(st) that has p(st)h(st) ≤ 0 and

[p(st+1) + x(st+1)]h(st) ≥ 0 ∀st+1.

with one or both inequalities strict.

When the payoff pricing functional we are talking about is associated with equilibrium security prices p∗, we

call it an equilibrium payoff pricing functional.

Theorem. If agents’ utility functions are strictly increasing, then there is no arbitrage at equilibrium security prices.

Further, the equilibrium payoff pricing functional q is strictly positive.
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12 Multidate Dynamically Complete Markets

• Markets are dynamically complete if and only if the number of (non-redundant) securities is equal to

the number of future states st+1, for any preceding st.

• Event prices are strictly positive if and only if there does not exist arbitrage.

• Derive an equation relating security prices p with event prices q.

• Define and construct the valuation functional Q(z) for payoffs z ∈ Rk.

Even though there may not be as many secruties as there are events and dates, the ability to trade at future

dates allows the agents an ability to rebalance their portfolio and complete markets. This will be shown below.

Another way in which markets can be completed would be if agents are able to trade Arrow securities for all future

events st. These securities pay out a dividend of 1 only in their corresponding event st. The intuition is simple, you

can achieve any payoff you want by scaling up or down the quantities of Arrow dividends you purchase; therefore,

you can span the space Rk completely.6

Definition. Define the one-period payoff matrix at event st as a J × κ(st) with entries pj(st+1) + xj(st+1) for all

rows j = 1, 2, ..., J . κ(st) is the number of successors st+1 that can occur, given that st has been realized.

So, each row of the payoff matrix represents a security, and each column contains the gross payoff of holding

one unit of that security.

Theorem. Markets are dynamically complete iff the one-period payoff matrix in each nonterminal event st is of

rank κ(st).

Proof. For any event st, if J < κ(st), then there are an insufficient number of assets to span the space Rκ(st). If

J > κ(st), then there exists a basis of κ(st) linearly independent rows that can replicate the remaining J − κ(st);

thus, WLOG consider a square matrix. Given the columns are linearly independent, the matrix X has an inverse

and h(st) = X−1(st)z maps back to a solution for the portfolio h needed to reach a payoff point z.

If markets are dynamically complete and the Law of One price holds, then we have a unique linear payoff pricing

functional q on the asset span M(p) which is simply the space Rk. To define the values of the pricing functional,

we use Arrow securities. In the context of the multidate model, an Arrow security with dividend in period st is

represented by a S vector with a 1 in the sT position and zero everywhere else. Then, define q(st) = q(e(st)) as

the event price associated with an Arrow security paying out 1 in state st. Because every payoff z ∈ Rk is simply

scaled Arrow securities (scaled by z ∗ 1), we can price it using event prices:

q(z) = q(
∑
s∈S

z(s)e(s)) =
∑
s∈S

q(s)z(s) (1)

where S is all the events and times that can occur. We can equivalently write (with an inner product notation)

6In the multidate market setup, to avoid continually using notation S × T for the asset span, I just use k. So does Jan the Man.
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this as q(z) = qz where q is a vector of event prices.7 Thus, event prices are strictly positive iff the payoff pricing

functional is strictly positive.

Theorem. Event prices in a multidate security economy are strictly positive iff there does not exist an arbitrage.

Proof. This proof method follows from Section 3’s two-date proof and can be extended to the multidate economy.

Proposition. Event prices satisfy

q(st)pj(st) =
∑

st+1|st

q(st+1)[pj(st+1) + xj(st+1)] (2)

for every event st and all t ≥ 0.

Proof. Consider buying security j at event st and selling it at time t+ 1 for all possible st+1. Call this strategy ĥ.

Thus, we have

z(ĥ, p)(st) =− pj(st)

z(ĥ, p)(st+1) =pj(st+1) + xj(st+1) ∀st+1

and lastly z(ĥ, p)(ξt) = 0 for all other possible events and times.

For this payoff z(ĥ, p), the payoff pricing functional gives us q(z(ĥ, p)) = p0ĥ0 = 0. Then, apply event prices in

form q(z) = qz = 0 to obtain

0 =
∑

st+1|st

q(st+1)[pj(st+1) + xj(st+1)]− q(st)pj(st).

and we obtain the identity.

Now, consider the agent problem again

max
c,h

u(c) (3)

s.t. c0 = ω0 − p0h0

s.t. ct = ωt + zt(h, p) ∀t ≥ 1.

Note: the date 0 value of the portfolio h must be p0h0 = q(c+1 − ω
+
1 ) where the + notation represents all future

dates t ≥ 1; this states that the strategy which generates all future consumption less future endowments must be

the price of the date 0 portfolio. The second constraint can be written as c1+ − ω1+ ∈ M(p), which just says that

the stream of consumption less endowments must be an allocation/payoff in the asset span.

7In the two-date model, we had a single-valued, unique payoff pricing functional and used Arrow securities to recover the vector q of

state prices. Here, we do the same thing in a larger state-space, but now we are calling the corresponding vector q as containing all the

event prices. I think this is just to distinguish between the two models. They are conceptually and mathematically the same thing.
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If markets are complete, this constraint is trivially satisfied. Thus, (in complete markets) we can re-cast this

problem with just the first constraint as

max
c

u(c) (4)

s.t. c0 + qc+1 = ω0 + qω+
1

because the payoff pricing functional is linear. Optimization of (4) yields

q(st) =
uc(st)

uc(s0)
∀st, t, (5)

given we normalize q(s0) = 1. Under market completeness, we have an equivalence between solving problem (3) by

choosing {c, h} with respect to equilibrium prices p and solving problem (4) by choosing {c} with respect to event

prices q, which are derived from the system in (2). The problem in (4) is a date-0, or contingent claims problem,

whereas the problem in (3) is for a security market equilibrium. With no arbitrage and completeness, both problems

solve for the same {c∗}; lacking a complete market, there can exist multiple event prices satisfying (2), leading to

a divergence between {c∗} in the security market and {cq} in problem (4).

Theorem. If security markets are dynamically complete under equilibrium security prices and agents’ utility func-

tions are strictly increasing, then every equilibrium consumption allocation is Pareto optimal.

Proof. Utilize the same proof method as you would for the 2-date model. Posit an equilibrium allocation (c∗, h∗)

and suppose there exists another allocation (c̃, h̃) which Pareto dominates it. Through strictly increasing utility,

such a allocation can be proven to be infeasible.

Often, it may be the case that the payoff pricing functional q is a proper subset of the contingent commodity

space Rk. In this case, as before, we define the valuation functional Q : Rk → R where

Q(z) = q(z) for every z ∈M(p).

Theorem. Fundamental Theorem of Finance (for Multidate markets). Security prices exlcude arbitrage iff there

exists a strictly positive valuation functional.

Proof. Use same proof method from Section 4. In this version, we have

qu(z) =min
h
{p0h0 : z(h, p) ≥ z}

ql(z) =max
h
{p0h0 : z(h, p) ≤ z}

for anypayoff z. Then construct Q(·) by identifying a payoff z∗ not in M and so forth.

Theorem. Suppose that security prices exclude arbitrage. Then security markets are dynamically complete iff there

exists a unique strictly positive valuation functional.

Absence of arbitrage guarantees a strictly positive payoff and valuation pricing functional. Further, when we

assume dynamically complete markets, which implies that q(·) has Rk as a domain. Therefore, given that q is unique

on its domain, the payoff pricing functional is equivalent to the valuation functional on the contingent commodity

space.
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13 Event Prices, Risk-Neutral Probabilities and the Pricing Kernel in

Multidate Markets

• Define the risk-neutral measure π∗ and show its properties.

• Define the pricing kernel kq and show its relation to event prices q.

When markets are dynamically complete, the payoff pricing functional q is defined by its pricing of Arrow

securities e(s) ∈ Rk. When markets are incomplete, some Arrow securities cannot be priced by q. Despite this,

given the absence of arbitrage, the payoff pricing functional can be extended to a strictly positive valuation functional

Q which can price all Arrow securities. Thus,

q(s) = Q(e(s)) (1)

for every event e(s) is a unit vector in Rk with unit payoff in only the event s. We call q(s) the event price. Thus,

for any payoff z, we have Q(z) =
∑
st∈z q(st)z(st) =

∑T
t=1

∑
st∈Ft q(st)z(st) where Ft is the set of events which

relate to the payoff z. It was shown in the previous section that this implies that the event prices are the solution

to the linear system of equations

q(st)pj(st) =
∑

st+1|st

q(st+1)[pj(st+1) + xj(st+1)] (2)

for all t and all st. There exists a strictly positive valuation functional iff there exists a strictly positive solution

to the above system. Further, if markets are incomplete, there are many valuation functionals and therefore many

solutions to the above system.

Using the event price representation of the valuation functional, if we were to buy a security j at event st and

hold until the end of the economy, we would observe

pj(st) =
1

q(st)

T∑
τ=t+1

∑
st+1|st

q(sτxj(sτ ) (3)

The one-period return on a security j in event st+1 is

rj(st+1) =
pj(st+1) + xj(st+1)

pj(st)
(4)

which we write as rj,t+1 as shorthand. Further, if a return does not depend upon a future realization, it is considered

risk free and written as r̄(st+1) in all events st+1, where its value is known at time t.

Definition. If at all dates and in every possible event there exists a a strictly positive risk-free, one-period return,

then define the discount factor ρ(st) as

ρ(st) =

t∏
τ=1

[r̄(sτ )]−1 t = 1, 2, ..., T. (5)

The discount factor is simply the inverse of the product of risk-free returns from time zero to now (date t). This

is a Ft−1-measurable function (i.e. we know the value of the risk-free return at date t and therefore know the value

of the discount factor at date t). This is just to say that we know what the discount factor will be next period.
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Define a risk-neutral probability at date T as

π∗(sT ) =
q(sT )

ρ(sT )

and for all other dates as

π∗(st) =
∑

All possible ST

π∗(sT ).

This notation is confusing. Basically, the probability of event st is the sum of all the probabilities sT that can be

reached, given that st has occurred. Given this, the risk-neutral probability of event st satisfies

π∗(st) =
q(st)

ρ(st)
(6)

so it is the event prices, scaled by the corresponding discount factor. Knowing this, start with the event price

representation (2) to get an expression in terms of the risk-neutral expectation:

pj(st) =
1

q(st)

∑
st+1|st

q(st+1)[pj(st+1) + xj(st+1)]

=
1

q(st)
ρ(st+1)

∑
st+1|st

q(st+1)

ρ(st+1)
[pj(st+1) + xj(st+1)]

=
1

π∗(st)

1

r̄(st+1)

∑
st+1|st

π∗(st+1)[pj(st+1) + xj(st+1)]

=
1

r̄(st+1)

∑
st+1|st

π∗(st+1|st)[pj(st+1) + xj(st+1)]

=
1

r̄(st+1)
Et,∗[pj(st+1) + xj(st+1)]. (7)

where π∗(st+1|st) = π∗(st+1)
π∗(st)

. Thus, the price of a security j is its discounted, expected price plus dividend payout

tomorrow, with respect to the risk-neutral probability measure. From flipping the position of pj(st) and r̄(st+1),

we get the expression

Et,∗[rj,t+1] = r̄(st+1) (8)

such that the risk-netrual expected return of a risky security is equal to the risk-free return available at that date.

If we substitute the risk-neutral probabilities π∗ into the valuation equation Q(z) =
∑
t

∑
st
q(st)z(st), we observe

Q(z) =

T∑
t=1

E∗[ρtzt] ∀zt ∈ Rk (9)

and further can derive

q(z) =

T∑
t=1

E∗[ρtzt] ∀zt ∈M(p) (10)

pj,0 =

T∑
t=1

E∗[ρtzjt]. (11)

where this last equality illustrates that the date-0 price of a security is equal to the expected, discounted sum of

future dividend streams, with respect to the risk-neutral measure.
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Now, we can also talk about the payoff pricing kernel in multidate markets which serves an analogous role to

the two-period model (as in Section 8).

Definition. The pricing kernel kq is a payoff in M(p) such that

q(z) =

T∑
t=1

E[kqtzt] (12)

where expectation E is taken with respect to the natural probability measure π.

This value is unique and in the asset span. The multidate extension here is that the kernel is a T×S dimensional

object. Thus, we can think of several ways in which to represent the price of a portfolio attaining some payoff z:

one with natural expectation, using the pricing kernel, and another way with risk-netrual expectations. Observe

q(z) =

T∑
t=1

E∗[ρtzt]

=

T∑
t=1

E[kqtzt]

=

T∑
t=1

∑
st

π(st)kq(st)z(st)

where in a two-period model, this would just be written as q(z) = 1
r̄E∗[z] = E[kqz].

Proposition. The pricing kernel can be used (by definition) in the following relations

kqt = E[kq,t+1rj,t+1]

and if the security in question is risk-free, we get

kqt = r̄t+1Et[kq,t+1].

Proof. Just as we derived the event prices system of equations, consider a strategy of only buying security j in

event st and selling it at date t+ 1 for any event st+1. We will get the following equality

kqtpj(st) =
∑

st+1|st

π(st+1|st)kq(st+1)[pj(st+1) + xj(st+1)]

which can then be written as

kqt = E[kq,t+1rj,t+1|st].

If the security in question is risk-free, then it can be pulled out of the operator for the last equality of the proposition.

Proposition. In a dynamically complete market, the pricing kernel is given by

kq(st) =
q(st)

π(st)
.

Same as section 8. In complete markets, q is unique on Rk and
∑
s πs

qs
πs
zs = E[kqz] is the unique solution for

the kernel on the span M = Rk.
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14 Martingale Property of Gains

• Define the gain Gt and discounted gain Ĝt.

• Discounted gains are martingales with respect to the risk-neutral measure.

Definition. A sequence of random variables {yt}Tt=0, which are Ft-measurable with respect to the filtration Ft, are

called a martingale with respect to the probability measure π if

Et[yτ ] = yt ∀τ ≥ t

Definition. The gain at date t ≥ 1 on a strategy h is

G(st) = p(st)h(st) +
1

ρt

t∑
τ=1

ρτzτ (h, p)(sτ ). (1)

What does this measure? The gain gives you the date-t value of a portfolio strategy h plus the sum of net

payoffs of that strategy from all previous dates, where those net payoffs are re-invested at the risk-free rate. If we

multiplied the definition through by ρt, then we would have the discounted gain

Ĝ(st) = ρtp(st)h(st) +

t∑
τ=1

ρτzτ (h, p)(sτ ) (2)

which is now a date-0 measure of a portfolio strategy. If we looked at the gain on holding a single security, it would

be simply ρtpj(st) +
∑t
τ=1 ρτxj(sτ ).

Theorem. The discounted gain on any portfolio strategy is a martingale under the risk-neutral probability measure.

That is

E∗,t[Ĝτ ] = Ĝt ∀τ ≥ t.

Further, given pricing kernel kqt, we have

Et[kqτGτ ] = kqτGt

with respect to the natural probability measure π and note this is for the gain, not discounted gain.

Proof. I just prove the first part. We can show

Ĝt+1 − Ĝt = ρt+1[(pt+1 + xt+1)ht]− ρtptht.

Take risk-neutral conditional expectations on both sides of this equation, and recall from pjt = 1
r̄t+1

E∗,t[pj,t+1 +

xj,t+1] we get

ρtptht = ρt+1E∗,t[(pt+1 + xt+1)ht]

which is the desired result.
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15 Conditional Consumption-Based Security Pricing in Multidate Mar-

ket

We have expression

r̄t+1 =
1

δ

v′(ct)

Et[v′(ct+1)]
.

We eventually get to security-pricing equation

Et[rj,t+1] = r̄t+1 − δr̄t+1
covt(v

′(ct+1), rj,t+1)

v′(ct)

using the same methods as in Section 7.
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16 Equilibrium in Infinite-Time Security Markets

• Define the agent’s infinite-time problem under debt constraints and equilibrium condition.

• Define an infinite-time equilibrium under debt constraints.

Many securities (such as publicly-traded stocks) are thought of as, or priced as, an infinite stream of potential

dividends. Thus, in moving towards an infinite time economy, we potentially step toward a closer approximation

to reality. This new setup is not innocuous: new problems, such as the infinite rolling-over of debt, have to be

addressed. Now, formalize an agent’s preferences as

u(c) =

∞∑
t=0

δtE[v(st)] (1)

for positive levels of consumption, a discount factor δ ∈ (0, 1) and a strictly increasing, continuous utility function

v. Further, each agent has a consumption endowment process, specified as ωi = (ωi0, ω
i
1, ...) ∈ R∞+ for each agent

i. These sum to aggregate consumption endowments ω̄ =
∑
i ωi . In addition, agent’s are endowed with an

initial portfolio endowment ĥi0 ∈ RJ and there are no more portfolio endowments at future dates. These initial

endowments aggregate to h̄i0 =
∑
i ĥ

i
0 > 0 so there is a positive supply. Lastly, we specify the effective consumption

endowment of an agent as ω̂i(st) = ωi(st)+ĥi0x(st) as the sum of the agent’s consumption endowment and dividends

on portfolio endowment, in event st.

Agent budget constraints are

c(s0) + p(s0)h(s0) =ωi(s0) + p(s0)ĥi0 (2)

c(st) + p(st)h(st) =ωi(st) + [p(st) + x(st)]h(st−1) ∀st

Definition. A debt constraint, with respect to threshold D(st+1) is

[p(st+1) + x(st+1)]h(s)t) ≥ −D(st+1 ∀st+1 (3)

and a borrowing constraint, with respect to threshold B(st), is

p(st)h(st) ≥ −B(st) (4)

Note that there can potentially be a vector of debt constraints for each state of the world tomorrow at st+1.

Both constraints are with respect to date t portfolio decisions, but differ in that debt constraints restrict the agent

according to outcomes tomorrow whereas borrowing constraints are a limit on quantities today.

The first-order conditions of the problem with an attached debt constraint leads to the pricing equation

p(st) =
∑
st+1

[p(st+1) + x(st+1)][
uc(t+ 1)

uc(t)
+
µ(st+1)

uc(t)
] (5)

where µ is the Lagrange multiplier associated with the debt constraint. When the debt constraint is not binding,

we get the normal condition. When the debt constraint is binding, it creates a wedge in the pricing equation.
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Definition. An equilibrium under debt constraints is a price process p, consumption/portfolio allocation {ci, hi}Ii=1

such that the allocations are solutions to the agent problem, subject to budget and debt constraints and the transver-

sality condition. Further, markets clear:

1.
∑
i h

i(st) = h̄0

2.
∑
i c
i(st) = ω̄(st) + x(st)h̄0 ∀st, t.
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17 Arbitrage, Valuation and Price Bubbles in Infinite Time

• Define arbitrage under debt and borrowing constraints.

• These forms of arbitrage are equivalent to one-period arbitrage.

• No arbitrage under debt/borrowing restrictions is equivalent to strictly positive event prices.

• Define a price bubble σ. Under mild(?) conditions, price bubbles are zero in equilibrium.

Definition. An arbitrage under debt constraints is a portfolio strategy h such that

p0h0 ≤ 0 and z(h, p)(st) ≥ 0 ∀st, t

with one or two strict inequalities, and

[p(st+1) + x(st+1)]h(st) ≥ 0 ∀st+1.

This is a common definition for arbitrage with the added restriction that the agent cannot have positive debt

tomorrow (st+1). Thus, an arbitrage under debt constraints is a trading strategy that i) costs nothing today, ii)

guarantees a positive future in future states and iii) does not require a negative gross payoff in any event. Another

way to think about the third condition is that an arbitrage is a strategy h that an agent can technically add to an

existing strategy ĥ without violating constraints. So, an arbitrage under debt constraints must be able to be added

to any strategy without violating any possible debt constraints; the one that satisfies this is the one that does not

incur positive levels of debt for all st.

Definition. A one-period arbitrage is a event st strategy h(st) such that

p(st)h(st) ≤ 0 and [p(st+1) + x(st+1)]h(st) ≥ 0 ∀st+1

with at least one strict inequality.

Proposition. Security prices exclude arbitrage under debt constraints iff they exclude one-period arbitrage in every

event.

Proof. (⇒): Assume @h for an arbitrage under debt constraints. Looking at the definitions above, we see that a

one-period arbitrage is an arbitrage under debt constraints.

(⇐): Assume @h(st), a one-period arbitrage for all events st. Suppose, for contradiction ∃ an arbitrage under

debt constraints h. This implies

p0h0 ≤ 0 and [p(s1) + x(s1)]h0 ≥ 0 ∀s1

by definition of an arbitrage under debt constraints. Given that there is no one-period arbitrage, this implies

p0h0 = [p(s1) + x(s1)]h0 = 0 for all s1. Because an arbitrage under debt constraints requires

z(h, p)(s1) ≥ 0⇒ p(s1)h(s1) ≤ 0.
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Moving forward in time, we also have (by definition) that [p(s2) + x(s2)]h(s1) ≥ 0 for all s2 and the assumption

of no one-period arbitrage again imposes p(s1)h(s1) = [p(s2) + x(s2)]h(s1) = 0. All future time periods follow,

inductively. In summary, we have a strategy h such that p0h0 = 0 and z(h, p)(st) = 0 for all st, which is not an

arbitrage under debt constraint. A contradiction.

Definition. Event prices in infinite time security markets are defined as a sequence q ∈ R∞ satisfying the equations

q(st)pj(st) =
∑

st+1|st

q(st+1)[pj(st+1) + xj(st+1)] (1)

for all events st and securities j = 1, 2, ..., J .

Theorem. Security prices exclude arbitrage under debt constraints iff there exist strictly positive event prices.

Proof. Recall Stiemke’s Lemma.8 Stiemke’s Lemma can be applied to the two date model and shows that if there

does not exist a one-period arbitrage strategy h(st), then equation (1) has a strictly positive solution q ∈ RS .

From our previous proposition, we know there is an equivalence between one-period arbitrage and arbitrage

under debt constraints. Therefore, because the event st is arbitrary and holds for all t, we have a strictly positive

solution in (1) for q ∈ RS×T .

Definition. An arbitrage under borrowing constraints is a strategy h such that

p0h0 ≤ 0 and z(h, p)(st) ≥ 0 ∀st

with at least one strict inequality and

p(st)h(st) ≥ 0 ∀st.

Thus, this definition of arbitrage differs from the debt constraint one in the sense that it restricts the values of

a portfolio today (what you borrow) versus the values of its realized return, tomorrow (what you owe).

8Stiemke’s Lemma states that @a ∈ Rm such that

aY ≥ 0 and ay ≤ 0

with at least one strict inequality if and only if ∃b ∈ Rn such that y = Y b and b >> 0. For the two-date model, this can be written as

@h ∈ RJ such that

hX ≥ 0 and hp ≤ 0

with at least one strict inequality if and only if ∃q ∈ RS such that p = Xq and q >> 0.

40



Financial Econ

Proposition. Security prices exclude arbitrage under borrowing constraints if and only if they exclude one-period

arbitrage.

Proof. (⇐): Assume there does not exist one-period arbitrage. Suppose, for a contradiction, that there exists an

arbitrage under borrowing constraints. This means there exists an h such that we observe

p0h0,≤ 0 p0h0 ≥ 0, p(s1)h(s1) ≥ 0, [p(s1) + x(s1)]h0 − p(s1)h(s1) ≥ 0 ∀s1

with at least one strict inequality on date-0 price and date-1 payoffs. given the first two conditions, we have

p0h0 = 0, which implies there must exist some s′1 such that

[p(s′1)+x(s′1)]h0 − p(s′1)h(s′1) > 0

⇒[p(s′1) + x(s′1)]h(s′1) > 0 (by p(s′1)h(s′1) ≥ 0)

which along with p0h0 = 0 constitutes a one-period arbitrage. A contradiction.

(⇒): Now, assume there does not exist arbitrage under borrowing constraints, but suppose, for a contradiction,

that there exists one-period arbitrage. This implies there exists an h(st) such that

p(st)h(st) ≤ 0 and [p(st+1 + x(st+1)]h(st) ≥ 0∀st+1

with at least one strict inequality. Now, consider a portfolio strategy h̃ defined as

h̃(s) =

h(st), when s = st

0, otherwise

which implies p0h̃0 = 0. Further, look at the payoff profile

z(h̃, p)(s) =


−p(st)h(st) ≥ 0, when s = st

[p(st+1) + x(st+1)]h(st) ≥ 0, for all s = st+1

[p(st+1) + x(st+1)]h̃(st) = 0, for all s 6= st, st+1

where one of the inequalities will be strict depending on the one-period arbitrage. Notice: the first two payoffs are

defined in terms of the one-period strategy h. Thus, we have a strategy h̃ with p0h̃0 = 0 and z(h̃, p)(st) ≥ 0 for all st

with one strict inequality guaranteed, which is an arbitrage under borrowing constraints; thus, a contradiction.

We can now express an analogous result for this form of arbitrage.

Theorem. Security price exclude arbitrage under borrowing constraints iff there exist strictly positive event prices.

Proof. Once again, given we know that an arbitrage under borrowing constraints is equivalent to a one-period

arbitrage, we can use Stiemke’s lemma and have necessity and sufficiency.
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Moving forward, many of the results in the multi-date security market setup more or less extend seamlessly

to the infinite time security market. For markets to be dynamically complete in infinite time, we require that the

number J of non-redundant securities is greater than or equal to the number of immediate successors of all events

st. If markets are dynamically complete and security prices do not permit arbitrage under debt constraints, then

there exists a unique solution of strictly positive event prices, given security prices p.

Just as before, using event prices q (which depend upon security prices p), the present value of a dividend stream

for security j in event st is

1

q(st)

∞∑
τ=t+1

∑
sτ|sτ−1

q(sτ )xj(sτ ). (2)

Note: if markets are not complete, there may exist multiple event prices, which means the present value of an asset

depends upon which event price is used. It is a result that if a security has zero dividends after a date t, its present

price is equal to its present value of dividend streams; that is,

pj(st) =
1

q(st)

T∑
τ=t+1

∑
sτ |sτ−1

q(sτ )xj(sτ ). (3)

Now, what happens to the present value calculation when a security admits positive, non-zero payoffs in perpe-

tuity? Is there a divergence between the present value of dividends and the price of the security?

Definition. Define a price bubble on security j after event st as

σj(st) = pj(st)−
1

q(st)

∞∑
τ=t+1

∑
sτ|sτ−1

q(sτ )xj(sτ ). (4)

Thus, a price bubble is exactly the difference between the current price of security j and its present value of

dividends, as calculated by event prices.

Proposition. It follows that

σj(st) = lim
T→∞

∑
St|st

q(sT )pj(sT )

and

q(st)σj(st) =
∑

st+1|st

q(st+1)σj(st+1) ∀j∀st. (5)

Definition. Agents exhibit uniform impatience with respect to the effective aggregate endowment ω̂ if there exists

γ ∈ [0, 1] such that

ui
(
ci−(st), c

i(st) + ω̂(st), γc
i
+(st)

)
> ui(ci) (6)

for every i, every st and every ci ∈ [0, ω̂]. Further, c−(st) and c+(st) notation refers to all consumption before and

after date st, respectively.

What does this definition mean? A uniform impatient agent has a fraction γ such that the utility from increasing

consumption by ω̂ today and decreasing consumption by (1 − γ)% at all future dates is better than staying with

the current consumption plan. This definition (which will now be used as an assumption) seems a little odd but is

not that restrictive; for instance, the discounted, time-separable utility functions exhibits uniform impatience.
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Theorem. Assume that agents’ utility functions exhibit uniform impatience. Suppose that q is the sequence of event

prices associated with a security markets equilibrium price vector p. If the present value of the aggregate endowment

is finite, then the price bubble of every security is zero, for all securities in strictly positive supply.
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18 Arrow-Debreu Equilibrium in Inifnite Time

• Define an Arrow-Debreu (AD) equilibrium.

• Under sitrctly increasing utility and market completeness, if (q, {ci}) is an AD equilibrium, then ∃h

such that (p, {ci, hi}) is a security market equilibrium (SM) under natural debt constraints.

• Under strictly increasing utility and market completeness and zero price bubbles, if (p, {ci, hi}) is a

SM equilibrium under debt constraints, then ∃!q such that q are event prices and (q, {ci}) is the AD

equilibrium.

An Arrow-Debreu market is date-0 market in the sense that all of the trade takes place at the beginning of time.

Further, all contingent claims (i.e. all Arrow securities) can be traded, which implies a complete market. Given

this type of market and its properties, we can make comparisons to the more realistic dynamic portfolio market in

which agents trade/update their portfolio sequentially, after each date.

To begin, we postulate the existence of market at date 0 which trades over all future events st for all t. Prices are

described by a positive, linear functional Q, which assigns a date 0 price to a payoff. This can often be represented

by a sequence q ∈ R∞ such that we write

Q(c) =

∞∑
t=0

∑
st

q(st)c(st)

for any infinite stream of state-contingent consumption. This functional form assumption is known as countably

additive pricing. Normalize the price to q(s0) = 1. Agents solve the problem

max
c,h

u(c) (1)

s.t.
∑
t

∑
st

q(st)c(st) ≤
∑
t

∑
st

q(st)ω̂
i(st)

plus the restriction that consumption be positive. The first-order conditions lead to

uc(st)

uc(s0)
= q(st) (2)

which states that the price of a claim to unit consumption at st is equal to the MRS between consumption at that

event and date 0 consumption.

Definition. An Arrow-Debreu equilibrium is a price system q and consumption allocation {ci}Ii=1 such that the

consumption is a solution to each agent’s problem (1) and markets clear

I∑
i=1

ci(st) = ω̂(st)

at all dates and all events.
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Definition. Natural debt bounds are

N i(st) =
1

q(st)

∞∑
τ=t

∑
τ

q(sτ )ωi(sτ ). (3)

If the negative of this quantity is used as a debt constraint, it says that an agent is not able to take out debt

larger than the present value of all future endowment streams.

Theorem. Suppose that (q, {ci}) is an Arrow-Debreu equilibrium in contingent commodity markets and agents’

utility functions are strictly increasing. If security markets are dynamically complete at security prices p, then

there exists a portfolio strategy {hi} such that (p, {ci, hi}) is an equilibrium in security markets under natural debt

constraints.

Now, a bit of a converse.

Theorem. Suppose that (p, {ci, hi}) is a security markets equilibrium under debt constraints and agents’ utility

functions are strictly increasing. If security markets are dynamically complete at prices p and price bubbles are zero,

then (q, {ci}) is an Arrow-Debreu equilibrium where q is the unique sequence of event prices.
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19 Speculative Trade

19.1 Harrison-Kreps (1978)

Consider a simple security economy for an infinite number of discrete dates t = 0, 1, 2, ... with just a single security

xt which pays out a dividends as

xt(s) =

1, if s=1

0, if s=0

(1)

so that there is a high state (1) and low state (0) in any given period. Markets are incomplete given debt limits

Dt = 0, which is to say there is no short selling the asset. There is a positive aggregate supply of the security

h̄0 = 1. Agents have preferences

ui(c) = Ei[

∞∑
t=0

βtct (2)

so that agents are risk-neutral and have their own beliefs about payoffs, embodied in different probability measures

πi. In particular, assume agents believe dividends follow a one-period Markov chain and have beliefs

Q1 =

1/2 1/2

2/3 1/3


and

Q2 =

2/3 1/3

1/4 3/4

 .
Consider the underlying fundamental value that each agent has towards holding the security forever. Denote this

as V i(s) where s is the initial date-0 state. This is written

V i(s) =

∞∑
t=1

βtEi0[xt] ∀s = 0, 1 (3)

=β[πisp0 + (1− πis)(p1 + 1)] (4)

where (3) calculates fundamental value via taking expectation of the perpetual dividends steam and (4) utilizes

the fact that date-0 value is the discounted, expected payoff of the security next period.9 This ius a system of two

equations and can also be represented as

P = β
[
I − βQ]−1Q

0

1

 (5)

where P is the price vector and I is the identity matrix.

9In the low state, the payoff is just the low state price p0 of the security, whereas in the high state the payoff is the high state price

p1 plus the dividend of 1.

46



Financial Econ

Given a discount factor β = 0.75, we recover prices for the agents

(p1
0, p

1
1) = (4/3, 11/9) and (p2

0, p
2
1) = (16/11, 21/11) (6)

where pji is the price attached to the security by agent j given date-0 realization of state i. At this point, we

obviously note that agent’s have heterogeneous beliefs about the fundamental value of the security. Further, agent

2 is more optimistic in both starting scenarios!

These fundamental values exist in a security economy where the agent is alone with those beliefs. What happens

when heterogenuous beliefs coexist in equilibrium? It must be true that

pt = max
i

βEit [pt+1 + xt+1] (7)

where the price is set by the agent with the most optimistic view tomorrow. This equilibrium condition leads to

the system of equations

p0 =β[
1

2
p0 +

1

2
(p1 + 1)] (8)

p1 =β[
1

4
p0 +

3

4
(p1 + 1)] (9)

where (8) is priced by agent 1’s expectations and (9) by agent 2’s: different beliefs but the same price system. This

leads to solutions

(p∗0, p
∗
1) = (

24

13
,

27

13
) (10)

and agent 1 holds all of the security (h̄ = 1) in state 0 and agent 2 holds all in high state 1. Notice that the

equilibrium prices in (10) exceed the fundamental values of both agents in both states in (6)! Thus, there exists a

speculative bubble for all events st in the model. How is this possible? From the equilibrium condition, the investor

has to forecast both future dividends and prices; this means, the agent must implicitly take into account the beliefs

of the other agent. Even if a state gives the agent a signal of low dividends to come, it may nonetheless forecast

higher prices due to the other agent’s optimistic beliefs. Here, agent’s trade not only for dividends but also for

resale value of the security.
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19.2 Rational Expectations Equilibrium

Consider a two-period security market economy with I agents who each receive a signal σi ∈ Σi which provides

information about the state of the world tomorrow s. Agent i’s signal is private to her so she does not observe

others’ signals, but she does observe the market price and she knows the joint probability distribution π(s, σ1, ..., σI)

of a certain state and aggregate signal being observed. Here, we develop the notion of a price forecast function.

Definition. A price forecast function Φ maps joint signals to security price vectors:

Φ : Σ1 × · · · × ΣI → RJ+ (1)

where Σi is a finite set containing all the possible signals that agent i can receive, and we can represent the signal

profile simply as Σ.

Therefore, if an agent observes a price p then she can maybe recover the signal via Φ−1(p) or at least make some

probability assessment based upon the function Φ(·). Thus, the agent problem is

max
h,ci0,c

i
1,s

S∑
s=1

π(s|σi,Φ = p)ui(ci0, c
i
1,s) (2)

s.t. ci0ph
i ≤ ωi0

s.t. ci1,s ≤ wi1,s + xsh
i ∀s

Definition. A rational expectations equilibrium is a price forecast function Φ such that Φ(σ) = p, where p is an

equilibrium price vector, and each agent solves their problem (2), for any joint signal σ. Further, markets must

clear:

1.
∑
i c0 =

∑
i ω

i
0

2.
∑
i hi = h̄i

3.
∑
i c
i
1,s =

∑
i ω

i
1,s + h̄xs ∀s = 1, 2, ..., S.

If the price forecast function is revealing (i.e. a one-to-one function) then the rational expectations equilibirum is

not very interesting, as agents can perfectly recover the joing signal σ, conditioned on the observed price Φ(σ) = p.

A variation on this setup is to assume that all agents receive a noisy signal which is composed of the true value of

the signal and an error term.
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20 Recursive Preferences

Refer to Kreps and Porteus for seminal paper on recursive preferences with complete axiomization. For now, we

consider Epstein-Zin preferences, which have a period t utility form of

Ut = [(1− β)c1−ρt + βRt(Ut+1)1−ρ]
1

1−ρ

where Rt(Ut+1) = Et[U
1−γ
t+1 ]

1
1−γ . This is model is characterized with three parameters (β, γ, ρ). When ρ = γ, the

formula reduces to expected utility. Loosely, ρ is for inter-temporal elasticity and γ represents the agent’s attitude

towards risk.

To illustrate how this representation breaks from that of a standard expected utility representation, consider

the following example. You have two identical consumption sequences with nearly identical information sets:

{cs}ts=0 with {Ft}∞t=0

{cs}ts=0 with {F∗t }∞t=0

where Ft = F∗t ∀t 6= τ and F∗τ = Fτ+1. The idea here is that the sequence of consumption is the same and the

available information is the same for all dates except date τ , in which case F∗ tells you tomorrow’s consumption

and F does not. Now, consider the value function transformations

Ṽt =
U1−ρ
t

1− ρ
, Ṽ ∗t =

U∗t
1−ρ

1− ρ
.

Now, re-write the Bellman as

Ṽt =
1

1− ρ
[(1− β)c1−ρt + βRt(Ut+1)1−ρ]

1−ρ
1−ρ

=
1− β
1− ρ

c1−ρt +
β

1− ρ
Et[U

1−γ
t+1 ]

1−ρ
1−γ

=
1− β
1− ρ

c1−ρt +
β

1− ρ
Et[((1− ρ)Ṽt+1)

1−γ
1−ρ ]

1−ρ
1−γ

and the same form follows through for Ṽ ∗t . Look at Ṽ ∗τ :

Ṽ ∗τ =
1− β
1− ρ

c1−ρτ + βṼτ+1

where Eτ∗ [((1−ρ)Ṽ ∗τ+1)
1−γ
1−ρ ]

1−ρ
1−γ = Eτ+1[((1−ρ)Ṽ ∗τ+1)

1−γ
1−ρ ]

1−ρ
1−γ = (1−ρ)Ṽτ+1 because conditioning on Fτ+1 changes

the value function (inside the expectation operator) from Ṽτ+1 to Ṽτ+1.

Now, let us define the concepts of early resolution and late resolution. Define early resolution of uncertainty as

E[Ṽ ∗τ |F∗−τ ] where F∗−τ = Fτ is the ∗ information set, in period τ , just before receiving the signal/information that

gives Fτ+1. So, we derived the functional form of Ṽ ∗τ where the agent sees ahead to τ + 1 and now condition on

that with date information set Fτ . Define late resolution as E[Ṽτ |Fτ ]. Thus, early resolution is preferred to late

resolution when

E[Ṽ ∗τ |F∗−τ ] >E[Ṽτ |Fτ ]

⇒ βEτ [Ṽτ+1] >
β

1− ρ
Eτ [((1− ρ)Ṽτ+1)

1−γ
1−ρ ]

1−ρ
1−γ

⇒ Eτ [(1− ρ)Ṽτ+1] >Eτ [((1− ρ)Ṽτ+1)
1−γ
1−ρ ]

1−ρ
1−γ .
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If we consider the function φ(x) = x
1−γ
1−ρ where x = (1− ρ)Ṽτ+1 then the above inequality reduces to

Eτ [φ(x)
1−ρ
1−γ ] > Eτ [φ(x)]

1−ρ
1−γ

where φ(·) is a concave function if 1−γ
1−ρ ∈ [0, 1]⇒ ρ < γ, which is a necessary and sufficient condition for the agent

to prefer early resolution of uncertainty.

20.1 IID versus Uncertain Perpetuity

Proposition. When ρ→ 1,

Ut = c1−βt [Rt(Ut+1)]β .

Thus, taking logs,

Ũt =(1− β)c̃t + βR̃t(Ut+1)

=(1− β)logct +
β

1− γ
log(Et[exp{(1− γ)Ũt+1}])

=(1− β)logct + βQt(Ũt+1)

where Qt(Ũt+1) = 1
1−γ log(Et[exp{(1− γ)Ũt+1}]).

Let’s consider different cases of consumption streams for the agent with ρ = 1. For the first case (perpetual

consumption case), assume that with probabilities (p, 1−p) the change in log consumption will be ∆logct+1 = gt+1 ∈

{gl, gh} forever after the first realization. That is, with probability p the agent will observe {gl, gl, gl, ...} and with

probability (1 − p) the agent will observe {gh, gh, ..., } forever. Since, we are talking about constrant growth rates

of consumption, the value funciton is not stationary; therefore, consider the following de-meaning transformation

(Note: Let Ut be the logged version)

Ut − ct =− βlogct + βQt(Ut+1)

=βQt(Ut+1 − ct) (Check it)

=βQt(Ut+1 − ct+1 + ct+1 − ct)

such that we have vt = Ut − ct and write

vt = βQt(vt+1 + gt+1)

where gt+1 is the log-growth rate of consumption in period t+ 1. This value function is stationary. Therefore, after

uncertainty has been resolved, we simply have

v=βQ(v+gi)

⇒v=
β

1− γ
log(exp{(1− γ)(vi + gi)})

⇒vi =
β

1− β
gi ∀i = l, h.
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That is to say the the value function, contingent on the realization of growth rates, is simply the present value of

the constant stream gi. On the other hand, at time 0, we have

v0 =βQ(v′ + g′)

=
β

1− γ
log(E[exp{1− γ

1− β
g′}])

=
β

1− β
1− β
1− γ

log(E[exp{1− γ
1− β

g′}])

=
β

1− β
Ω 1−γ

1−β
(g′) (*)

where

Ωθ(x) =
1

θ
log(E[exp{θx}]) and θ =

1− γ
1− β

and θ > 0.

For the second case (the iid case), consider consumption growth rates as an iid process each period with {gl, gh}

and corresponding probabilities (p, 1 − p). Now, value function v is constant throughout all time periods. Label

this one v̄. We observe

v̄ =βv̄ +
β

1− γ
log(E[exp{(1− γ)g′}])

⇒v̄(1− β) = βΩ1−γ(g′)

⇒v̄ =
β

1− β
Ω1−γ(g′). (**)

Thus, for given ρ = 1, we can look at scenarios in which the agent would prefer the random perpetuity versus

the iid case by comparing (*) with (**) as

β

1− β
Ω 1−γ

1−β
(g′) >

β

1− β
Ω1−γ(g′) (***)

⇒ Ω 1−γ
1−β

(g′) > Ω1−γ(g′)

and you can see as γ → ρ = 1 we head to the expected utility representation and the agent is indifferent. First, note

that 1−γ
1−β > 1− γ if and only if γ < 1. Use the following proposition to establish whether or not Ω is an increasing

or decreasing function.

Proposition. Let m be a non-negative random variable with E[m] = 1 and define function φ(m) = mlogm, then

E[φ(m)] ≥ 0.

A good way to compare (***) is to look at the function Ω and determine its derivative in the θ domain. Notice

∂Ωθ
∂θ

= − log(E[exp{θx}])
θ2

+
1

θ

E[exp{θx}x]

E[exp{θx}]
.

In the notation of the proposition, let m = exp{θx}
E[exp{θx}] which is non-negative and E[m] = 1. From the proposition

we know

E[
eθx

E[eθx]
]log(

eθx

E[eθx]
) =− logE[eθx] + E[

eθxθx

E[eθx]
]

=− 1

θ2
logE[eθx] +

1

θ
E[

eθxx

E[eθx]
]

=
∂Ωθ
∂θ
≥ 0.
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Therefore, Ω is an increasing function of θ. If γ < 1, we have 1−γ
1−β is greater than 1− γ and it must be that the

perpetuity case (v0) offers higher utility than the iid case (v̄).

20.2 Stochastic Discount Factor

For a stochastic discount factor, we generally observe the form

mt,t+1 =

∂ut+1

∂ct+1

∂ut
∂ut+1

ut
∂ct

.

Thus, for the recursive preferences, calculate

∂Ut
∂ct

= . . . = (1− β)Uρt c
−ρ
t

∂Ut
∂Ut+1

=βUρt Rt(Ut+1)−ρu−ρt+1(Rt(Ut+1))γ

which leads to stochastic discount factor

mt,t+1 = β(
ct+1

ct
)−ρ(

Rt(Ut+1)

Ut+1
)γ−ρ

which looks like the classic SDF we get from the consumption-based asset pricing model, with the added component

(Rt(Ut+1)
Ut+1

)γ−ρ.
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21 Constantinides-Duffie

This model is based upon Asset Pricing with Heterogenuous Consumers (1996) by Constantinides and Duffie.

Denote prices {πjt } and dividends {djt} for all assets j = 1, 2, ..., k. We have a set A of agents with income processes

{yit}i∈A and an initial holding of assets {θji,−1} = {θj−1}i∈A, such that they have identical starting assets. Each

agent solves

max
{cit,{θ

j
t}j}t

E0[
∑
t

e−ρt
c1−σit

1− σ
]

s.t. cit +
∑
j

πjt θ
j
it = yit +

∑
j

(πit + djt )θ
j
i,t−1

and in equilibrium we must observe market clearance

ˆ
i∈A

citdi =

ˆ
i∈A

yitdi+
∑
j

djt

ˆ
i∈A

θjitdi = 1 ∀j = 1, 2, ..., k

All agents maximizing, taking prices as given, along with market clearing conditions, defines a competitive equi-

librium. Moving forward, the central idea of the paper is that if observe data on prices and returns, then we can

construct A, {yit} and a stochastic discount factor to justify the the data as equilibrium outcomes.

Assumption. No arbitrage.

This implies there exists a sitrctly positive, time-zero discount factor

m∗t =

t∏
j=0

m∗j,j+1

such that prices satisfy

πjt =
1

m∗t
Et[

∞∑
j=0

m∗t+jdt+j ]

⇒1 = Et[m
∗
t,t+1R

j
t,t+1]

which will hold for any asset j. A one-period ahead return is simply Rjt,t+1 =
πjt+1+djt+1

πjt
.

Assumption.

lim
j→∞

Et[mt+j ] = 0

Assumption.
m∗t+1

m∗t
≥ e−ρ(ct+1

ct
)−σ ∀t

where the former condition is a transversality-type condition on the SDF, whereas the latter is a little stranger/stronger

(but holds up under statistical tests in the paper). For an agent i, we have the Euler equation

Et[R
j
t,t+1e

−ρ(
ci,t+1

ci,t
)−σ] = 1.
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22 Long-Run Risk

22.1 Baseline Model

This section is based upon the long-run risk model, due to Bansal-Yaron (2004). In particular, suppose we have an

agent with Epstein-Zin preferences. Then for a return Ri,t+1, we have the standard asset pricing equation

Et[δ
θG
− θ
ψ

t+1R
−(1−θ)
a,t+1 Ri,t+1] = 1 (1)

where δ is the period discount fact, Ra,t+1 is the gross return on an asset which has aggregate consumption as its

dividends, and Gt+1 is the growth rate of aggregate consumption. Further, we have the parameterization θ = 1−ψ
1−1/ψ

where γ ≥ 0 is the risk aversion parameter and ψ ≥ 0 is the intertemporal parameter. Thus, we have

Mt+1 = δθG
− θ
ψ

t+1R
−(1−θ)
a,t+1 (2)

as the model stochastic discount factor. We assume that returns on asset i are observable but the Ra return is

unobservable. From Campbell-Shiller, we utilize the approximation

ra,t+1 = κ0 + κ1zt+1 − zt + gt+1 (3)

where lowercase variables are logged and zt = log(PtCt ) is the log of the price-consumption ratio. Further, (κ0, κ1)

are constants. From this we have

mt+1 = θlogδ − θ

ψ
gt+1 + (θ − 1)ra,t+1. (4)

We now specify the following exogenous processes that drive the model:

xt+1 =ρxt + φeσtet+1

gt+1 =µ+ xt + σtηt+1

gd,t+1 =µd + φxt + φdσt + ut+1

σ2
t+1 =σ2 + ν1(σ2

t − σ2) + σwwt+1

where gd is the log of the growth rate for aggregate dividends. We assume (et+1, ηt+1, ut+1, wt+1) are iid standard

normal random variables. Notice that for the growth rates (gt, gd,t), there is a persistent component xt included

along with time-varying variance (i.e. heteroskedasticity). For this model, it will be sufficient to work with the state

variables (xt, σ
2
t ).

We will conjecture the form

zt = A0 +A1xt +A2σ
2
t (5)

and plug this into (3) and that into (1) to recover the z coefficients and ultimately the value of ra,t+1. For the LHS
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of (1), we write

Et[exp{θlogδ −
θ

ψ
gt+1 + θra,t+1}] = 1 (letting ri,t+1 = ra,t+1)

⇒Et[exp{θlogδ −
θ

ψ
gt+1 + θ(κ0 + κ1zt+1 − zt + gt+1)}] = 1 ( subbing in (3))

⇒Et[exp{θlogδ −
θ

ψ
gt+1 + θ(κ0 + κ1(A0 +A1xt+1 +A2σ

2
t+1)− (A0 +A1xt +A2σ

2
t ) + gt+1)}] = 1

(subbing in (5))

⇒Et[exp{θlogδ −
θ

ψ
(µ+ xt + σtηt+1) + θ(κ0 + κ1(A0 +A1(ρxt + φeσtet+1)+ (subbing in gt+1 and xt+1)

+A2(σ2 + ν1(σ2
t − σ2) + σwwt+1)− (A0 +A1xt +A2σ

2
t ) + µ+ xt + σtηt+1}] = 1

where the last line takes expectations of lognormal random variables. Because the Euler equation must hold for all

values of the stat variables (xt, σt), we first collect all xt terms and set to zero:

− θ
ψ
xt + θ(κ1A1ρxt −A1xt + xt) = 0

⇒A1 =
1− 1/ψ

1− κ1ρ
(6)

and then collect all σ2
t terms and set to zero yields

θ[κ1ν1A2σ
2
t −A2σ

2
t ] +

1

2
[(θ θ

ψ
)2 + (θA1κ1φe)

2]σ2
t = 0

⇒A2 =
1
2 [(θ − θ/ψ)2 + (θA1κ1φe)

2]

θ(1− κ1ν1)
. (7)
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22.2 Cost of Uncertainty

We want to compare utility under two scenarios: one in which uncertainty is resolved gradually, and the other in

which uncertainty is resolved at time t = 1. Assume the following dynamics:

log∆ct+1 =m+ xt + σWc,t+1 (1)

xt+1 =axt + φσWx,t+1 (2)

whereW is iid with distributionN(0,Σ). Further, assume agents have Epstein-Zin preferences with unitary elasticity

of substitution, so we get

logUt = (1− β)logct + βlog(Et[U
α
t+1]

1
α ) (3)

where 1− α is the relative risk aversion of the agent. Let’s define the timing premium π∗ as

π∗ = 1− U0

U∗0
(4)

where U0 is the date-0 utility in the normal setting and U∗0 is utility in the setting in which risk is resolved at time

t = 1. Let’s first start with the normal setting and use guess and verify on the functional form. Guess

logUt = logct + φ1m+ φ2xt + φ3. (5)

Now, let’s derive date-0 utility

logU0 =(1− β)logc0 + βlog(E0[eαlogU1 ]
1
α )

=(1− β)logc0 + β[φ1m+ φ3] + βlog(E0[eα(logc1−logc0+logc0+φ2x1)]
1
α )

=logc0 + β[φ1m+ φ3] + βlog(E0[eαlog∆c1+αφ2x1 ]
1
α )

=logc0 + β[φ1m+ φ3] + βlog([eαm+αx0+α2σ2

2 +αφ2ax0+
(φαφ2σ)

2

2 ]
1
α )

=logc0 +mβ(1 + φ1) + x0β(1 + aφ2) + β

(
φ3 +

σ2α

2
(1 + φ2φ2

2)

)
. (4)

Then, matching coefficients we get

logU0 = logc0 +
β

1− β
m+

β

1− βa
x0 +

α

2

βσ2

1− β
[
1 +

φ2β2

(1− βa)2

]
. (6)

Now, consider the case of total resolution of uncertainty at date t = 1. We would have,

logU∗1 =(1− β)[logc1 + βlogc2 + β2logc3 + ...] (7)

=logc0 + β∞t=1β
t−1log∆ct

which, using the date-0 information set, is a normal random variable with mean

E0[logU∗1 ] =logc0 +

∞∑
t=1

βt−1E0[log∆ct]

=logc0 +
m

1− β
+

∞∑
t=1

βt−1E[xt−1]

=logc0 +
m

1− β
+

a

1− βa
x0 (8)
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and a variance

var0(logU∗1 ) =
σ2

1− β2

(
1 +

φ2

(1− βa)2

)
. (9)

We now have enough information to compute the date-0 utility in the case of uncertainty resolution at t = 1:

logU∗0 =(1− β)logc0 + βlog

(
E0[U∗α1 ]

1
α

)
=logc0 +

β

1− β
m+

β

1− βa
x0 +

α

2

βσ2

1− β2
(1 +

φ2β2

(1− βa)2
). (10)

Therefore, compute

log
U0

U∗0
=
α

2
βσ2

[
1 +

φ2β2

(1− βa)2

]( 1

1− β
− 1

1− β2

)
=
α

2

β2σ2

1− β2

(
1 +

φ2β2

(1− βa)2

)
. (11)

It follows, that

π∗ = 1− exp{α
2

β2σ2

1− β2

(
1 +

φ2β2

(1− βa)2

)
}. (12)

Observation. The timing premium π∗ is positive if and only if α < 0.

Recall that we have a result (from the previous section) with Epstein-Zin preferences that early resolution of

uncertainty is always preferred if relative risk aversion exceeds the inverse of elasticity of substitution; that is,

1− α > 1− ρ.

In this example, we assume that ρ = 0 and we therefore get an equivalent result.
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23 Habit Model

23.1 Baseline Model

The representative agent has preferences

Et[
∑
t

δt
(Ct −Xt)

1−γ − 1

1− γ
(1)

where δ is the discount factor and Ct is called the agent’s habit. Note: pay attention to notation because capital

letters represent untransformed variables, whereas lowercase stands for log-transformed ones. Define the surplus St

as

St =
Ct −Xt

Ct
. (2)

We specify a process for consumption growth and the surplus

log∆ct+1 =g + νt+1 (3)

st+1 =(1− φ)s̄+ φst + λ(st)νt+1 (4)

where notice we are using the log transformations. For simplicity, we can take equation (3) as the specification for

the endowment process. The agent has marginal utility δt(Ct−Xt)
−γ = δt(CtSt)

−γ , so we get a stochastic discount

factor
Mt+1

Mt
= δ(

St+1

St
)−γ(

Ct+1

Ct
)−γ (5)

written in log form as

log∆mt+1 =logδ − γlog∆ct+1 − γlog∆st+1

=logδ − γ
[
g + (1− φ)s̄+ (φ− 1)st + (1λ(st))νt+1

]
=logδ − γ

[
g + (φ− 1)(st − s̄) + (1 + λ(st))νt+1

]
(6)

such that Mt+1

Mt
is a lognormal random variable with mean

elogδ−γ
(
g+(φ−1)(st−s̄)

)
+
γ2σ2ν

2 (1+λ(st))
2

. (7)

Then, consider a discount bond with price q as q = Et[
Mt+1

Mt
] which implies a gross risk-free interest rate Rf = 1

q

and net rate rf ≈ logRf such that

rf ≈ −logδ + γg − γ(1− φ)(st − s̄)−
γ2σ2

ν

2
(1 + λ(st))

2. (8)
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So far, we do not have a functional form for λ(·) so we impose three restrictions/assumptions to pin down its

form. We assume

rf is constant. (9a)

∂xt+1

∂ct+1
|St+1=S̄ = 0 (9b)

∂[∂xt+1

∂ct+1
]

∂st+1
|St+1=S̄ = 0 (9c)

Notice that these derivatives are with respect to log-transformed variables and evaluated at the untransformed

steady state surplus value S̄. From 9)a), we get that (1 + λ(st))
2 is a linear function of st to balance the equation

(8) at a constant value. Restrictions 9)b) and 9)c) require that habits are slow-changing with respect to consumption

and the surplus when the surplus ratio is near its steady state, respectively.

To work on 9)b) first, we need an expression for xt+1 in terms of ct. From (4) ( with (3) plugged in on the error

term), we get

Xt+1 =Ct+1[1− est+1 ]

⇒xt+1 = ct+1 + log(1− est+1)

⇒∂xt+1

∂ct+1
= 1− est+1λ(st)

1− est+1
(10)

which can be rewritten as

∂xt+1

∂ct+1
=1− estλ(st)

1− est
(assuming st+1 ≈ st)

=1− λ(st)

e−st − 1
. (11)

The approximation made in the first line comes from the assumption (and empirical observation) that φ ≈ 1. Now,

apply restriction (9b) to (10) to get

λ(s̄) =e−s̄ − 1

=
1

S̄
− 1 (12)

where we have subbed back in the untransformed steady state surplus S̄. Now, moving towards restriction (9c),

take the derivative of (10) with respect to surplus st:

∂[∂xt+1

∂ct+1
]

∂st+1
|St+1=S̄ =

∂[1− λ(st)
e−st−1

]

∂st

=− λ′(st)

e−st − 1
− λ(st)e

−st

(e−st − 1)2
= 0

which evaluated at S̄ gives

λ′(s̄) = − 1

S̄
. (13)
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Now, applying the restriction on the risk-free rate:

drf

dst
|st=s̄ =− γ(1− φ)− γ2σ2

ν(1 + λ(s̄))λ′(s̄) = 0

⇒γσ2
ν

S̄2
= 1− φ

⇒S̄ =

√
γσ2

ν

1− φ
. (14)

Given this, we can recover a functional form for λ(st); specifically,

λ(st) =


1
S̄

√
1− 2(st − s̄)− 1, if st ≤ smax

0, if st > smax

(15)

where

smax = s̄+
1

2
(1− S̄2). (16)

23.2 Time-Varying Risk-free Rate
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23.3 Value Function Iteration

We can write market return as Et[Mt+1(Pt+1+Ct+1

Pt
)] = 1 where dividends are treated as equivalent to consumption

claims at date t. Thus, we can write the Price-Consumption (Price-Dividend) ratio as

Pt
Ct

(st) = Et[Mt+1
Ct+1

Ct
(1 +

Pt+1

Ct+1
(st+1))] (9)

such that returns can be written as
(Pt+1/Ct+1) + 1

Pt/Ct

Ct+1

Ct
. (10)

To compute the numerical risk-free rate, we can use the first asset-pricing equation in (8) and do numerical inte-

gration on the first moment of the SDF. This is

Et[Mt+1] =δEt[(
Ct+1

Ct

St+1

St
)−γ ]

=δEt[e
−γe∆ct+1est+1/st ]

=δEt[e
−γeg+νt+1e(1−φ)(s̄−st)+λ(st)νt+1 ]

=δe−γ(g+(1−φ)(s̄−st)
ˆ ∞
−∞

e−γ(1+λ(st)vf(v)dν (11)

where f(ν) is a normal probability distribution with mean zero and variance σ2
v .

Next, we look to numerically solve for the ratio Pt
Ct

(st) over a grid of points for the logged surplus ratio st where

the domain ranges from 0 to Smax (i.e. Smax = esmax). Write

Pt
Ct

(st) =Et[Mt+1
Ct+1

Ct
(1 +

Pt+1

Ct+1
(st+1))]

=δe−γ(g+(1−φ)(s̄−st)+gEt[e
vt+1(1−γ(1+λ(st)))(1 +

Pt+1

Ct+1
((1− φ)s̄+ φst + λ(st)νt+1)]

=δeg(1−γ)−γ(1−φ)(s̄−st)
ˆ ∞
−∞

e(1−γ(1+λ(st)))ν(1 +
Pt+1

Ct+1
((1− φ)s̄+ φst + λ(st)ν))f(ν)dν (12)

where f(ν) is the same pdf.
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24 Appendix

24.1 Log Normal Distribution

A log normal random variable x is one such that its log-transform is normally distributed. Thus, if we define

x ∼ N(µ, σ2), then

E[log(x)] = µ and V ar(log(x)) = σ2.

In addition, we can derive results for the non-logged version of the random variable x. In particular, if x ∼ ln(µ, σ2)

and we are looking at the linear combination ax for some scalar a ∈ R, we observe

ax ∼ N
(
eaµ+ a2

2 σ
2

, (ea
2σ2

− 1)(e2aµ+a2σ2

)

)

24.2 Log Utility as Limit of Power Utility

24.3 Projections
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