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1 Defining an Economy and Welfare Theorems

First, let’s begin by providing a definition for an economy.1 An economy may be formalized as the set E where

E = {L, n, (Xi)
n
i=1, Y, (ωi)

n
i=1, (ui)

n
i=1},

where L represents the l-dimensional commodity space (normally chosen to be a subset of Rl), n is the number of

agents within the economy, each with their own consumption set Xi, endowment ωi and utility function ui : Xi → R.

Lastly, Y represents the technology set, where we assume that Y has constant returns to scale (CRS), implying that

Y is a convex cone.2 Notice that the technology set and the consumption set are both subsets of the commodity

space (i.e. Y ⊆ L and Xi ⊆ L). Next, we may define an allocation.

Definition 1.1. The set {x, y} constitutes an allocation, given x ∈ Rln, where x is simply a stacked vector of all

the consumption sets. This allocation is deemed feasible provided that the sum of individual consumption vectors is

equal to the sum of endowments plus technology set; that is,
∑n
i=1 xi =

∑n
i=1 ωi+y, where inputs are negative-valued

and outputs are positive-valued within the technology set. This condition is often called resource feasibility (RF), or

the market-clearing condition.

Example. Consider a simple economy with 2 agents and a commodity space consisting of labor, capital and a final

consumption good. The agents are endowed with labor and capital and do not value leisure. In this economy, we

have ω1 = (1, 3, 0)′ and ω2 = (1, 2, 0)′ where the labor time and capital are represented in the first and second

components, respectively. The technology set is characterized by a single firm, taking labor and capital as inputs to

produce the consumption good. An allocation, satisfying resource feasibility might be x1 = (0, 0, 4)′ and x2 = (0, 0, 2)′

with y = (−2,−5, 6)′ such that the identity is attained.

For the models considered here, we will assume that they are characterized by a linear price system, or inner

product representation:

v(x) =

l∑
i=1

pixi = p · x,

where the value of the consumption bundle, v(x), is a linear functional on the commodity space.3 On a finite space,

any linear functional can have an inner product price system representation.

1Thank you to Yuki Yao and Isaac Swift for comments and to Monica Tran Xuan, Sergio Ocampo-Diaz and Keyvan Eslami for

previous notes on this material.
2That is to say, that for scalars α, β, if y, y′ ∈ Y , then αy + βy′ ∈ Y , as well.
3A linear functional v is a function such that v(αx+ βy) = αv(x) + βv(y).
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Definition 1.2. A competitive equilibrium (CE) is an allocation {x, y} ∈ Rln+ ×Rl and price system p ∈ Rl++ where

∀i, xi ∈ argmax ui(xi)

s.t. p · xi ≤ p · ωi, xi ∈ Xi, and

y ∈ argmax p · y

s.t. y ∈ Y

and the resource feasibility constraint is met.

Definition 1.3. An allocation {x, y} is (Strongly) Pareto optimal if there does not exist a feasible allocation {x̂, ŷ}

such that

ui(x̂i) ≥ ui(xi) ∀i,

and holds with strict inequality for at least one agent i′.

Theorem 1.1 (First Welfare Theorem). Suppose that the number of agents n is finite and that agent utility

functions are locally non-satiated. Then, any competitive equilibrium allocation is Pareto Optimal.

Proof. This is a sketch of the proof. Suppose, for a contradiction, there exists a competitive equilibrium which

is not Pareto Optimal. Then, by the definition of Pareto optimality, there exists another feasible bundle {x̂, ŷ}

such that for at least one agent i′, we observe ui′(x̂i′) > ui′(xi′). Given that the allocation {x, y} is a competitive

equilibrium and that the utility functions are locally non-satiated, each agent fully expends her endowment wealth

on consumption. Thus, for agent i′,

p · x̂i′ > p · xi′ ,

and for all other agents i 6= i′,

p · x̂i ≥ p · xi.

In summing over all agents, this leads to p ·
∑n
i x̂i > p ·

∑n
i xi. Lastly, note that by the definition of competitive

equilibrium, firms are maximizing profits; thus, we observe

p · ŷ ≤ p · y.

Combining these equations, we have

p · (
n∑
i

x̂i − ŷ) > p · (
n∑
i

xi − y).

In a competitive equilibrium, we can prove that the resource constraint will hold with equality. Then we have

n∑
i

x̂i − ŷ ≤
n∑
i

xi − y = ω;

and multiplying through by the price vector, we have

p · (
n∑
i

x̂i − ŷ) ≤ p · (
n∑
i

xi − y) = p · ω,

a contradiction. Therefore, the competitive equilibrium must be a Pareto optimal allocation.
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Theorem 1.2 (Second Welfare Theorem). Assume that agent utility functions are strictly concave and differ-

entiable. Then, given any Pareto optimal allocation, there exists a price vector p and distribution of endowments

(ω̂i)Ni=1 such that the set (x, y, p) is a competitive equilibrium.

2 The Deterministic Neoclassical Growth Model

2.1 The Baseline Model

The neoclassical growth model consists of a production function taking the time t capital stock kt and labor services

lt as inputs to produce the final good yt:

yt = F (kt, lt).

In addition, each consumer is faced with a budget constraint over dividing current-period output between consump-

tion today and investment:

ct + it = yt,

where investment obeys the law of motion for the capital stock

kt+1 = (1− δ)kt + it,

assuming a depreciation rate of δ ∈ (0, 1).

In a competitive equilibrium each household is faced with a utility maximization problem, subject to their own

preferences and budget constraints. Under various sets of assumptions, this problem can be simplified from a n-

household economy to one of a representative agent making decisions over the aggregate quantities (or per capita

quantities). This representative household then chooses an allocation to solve the following problem:

max

∞∑
t=0

βtu(ct)

s.t.

∞∑
t=0

pt[ct + kt+1 − (1− δ)kt] ≤
∞∑
t=0

pt[rtkt + wtlt]

0 ≤ lt ≤ 1, ct ≥ 0, kt+1 ≥ 0,k0 known.

Here we assume that the agent’s discount factor β ∈ (0, 1). As can be seen in the budget constraint, the invest-

ment decision over capital has been substituted in. Instead of a social planner choosing how to divide aggregate

quantities of output between quantities of consumption and investment, the representative agent chooses consump-

tion and next-period capital, given their income from renting out their capital and labor services. Further, we

assume that consumption and capital must be non-negative quantities each period and that the initial capital stock

k0 is a known, fixed quantity.

The above problem is formulated in terms of an Arrow-Debreu competitive equilibrium in which the representa-

tive agent makes decisions at date 0, given perfect information about the future and known, fixed prices. Thus, the

price pt represents the price of 1 unit of consumption in period t, measured in period 0 units. On the RHS of the

budget constraint, rt and wt represent prices paid to the agent for his capital rent and labor services, respectively.

6
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These values have a contamporaneous interpretation. For instance, rt states that the consumer will receive rt units

of the consumption good ct for renting out his capital kt in that period. In combination with the period t price

level, ptrt states the value of rt units of the period t consumption good, measured in date 0 units.

The economy is also characterized by a firm, which chooses capital and labor inputs to solve the profit-

maximization problem:

max

∞∑
t=0

pt[yt − rtkt − wtlt]

s.t. yt = F (kt, lt) ∀t

and we have the resource feasibility constraint:

yt = ct + kt+1 − (1− δ)kt ∀t.

Definition 2.1. In this setting, a competitive equilibrium is defined as a household allocation decision ZH =

{(ct, kt+1, lt, yt)}∞t=0, a firm allocation decision ZF = {(kft , l
f
t )}∞t=0 and a price system {(pt, rt, wt)}∞t=0 such that,

given prices,

1. the representative agent maximizes utility subject to the budget constraint, resource constraints and the transver-

sality condition4,

2. the firm maximizes profits subject to its resource feasibility constraint, and

3. the aggregate resource feasiblity constraint is met (i.e. markets clear):5

F (kt, lt) = ct + kt+1 − (1− δ)kt (Goods)

kft =kt (Capital)

lft =lt. (Labor/Leisure)

Let’s now explicitly examine the conditions that must be met for us to have properly defined a competitive

equilibrium. Firstly, notice that leisure (the excess of labor) does not enter the utility function. In this case, we say

that the agent inelastically supplies her labor. So, while agents are given a choice of how much time to commit to

labor and leisure in this setup, they choose l∗ = 1 in equilibrium, given that the production function and utility are

strictly increasing functions. Thus, the representative agent chooses consumption and capital to maximize utility

and the firm chooses levels of capital and employment to maximize profits. Given a Lagrangian construction (with

a corresponding λ multiplier on the budget constraint), the representative agent first order conditions are

[ct] : βtu′(ct)− λpt = 0 (1)

[kt+1] : − λpt + λpt+1[rt+1 − (1− δ)] = 0 (2)

4The transversality condition can loosely be stated as a boundary condition for models of infinite time. It characterizes the marginal

value of capital in far-ahead time periods in such a way that the consumer does not over-accumulate capital in the limit. For more

information and detail, refer to the appendix.
5Technical note: Specify

∑∞
t=0 pt = lim

T→∞

∑T
t=0 pt. For this problem to be well-defined, we must have that

∑∞
t=0 pt <∞.

7
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and the firm first-order conditions are

[kft ] :Fk(kt, 1) = rt (3)

[lft ] :Fl(kt, 1) = wt. (4)

Equations (1) and (2) can be joined to yield the Euler Equation

u′(ct)

u′(ct+1)
= β[rt+1 + 1− δ] = β[Fk(kt+1, 1) + 1− δ]

where the last equality comes from exploiting the firm first-order condition on capital in equation (3). This

Euler Equation relates the inter-temporal tradeoff that takes place in marginal utility with respect to consumption.

When these conditions are met along with those required by resource feasibility, we have a competitive equilibrium.

Now, given that we have a competitive equilibrium, the first and second welfare theorems imply that we may

recast this problem as one of a social planner’s problem. This allows some simplification to the model: mainly, that

we may temporarily forget about prices and embed the production technology in the household budget constraint.

Thus, we may solve the problem:

v∗(k0) = max
ZH

∞∑
t=0

βtu(ct)

s.t. ct + kt+1 − (1− δ)kt = F (kt, lt)

where we assume the same non-negativity constraints apply and k0 is given. This representation of the problem

is often called the sequence problem (SP) as the value function v∗ maximizes over an infinite sequence of periods.

Greater convenience in solving such a problem may be achieved through trying to solve a recursive problem in the

form

v(k) = max
c,k′

{u(c) + βv(k′)}

s.t. c+ k′ − (1− δ)k = F (k, 1)

Note: Often times, we can embed the depreciated capital term inside a newly-defined production function to

make everything look neater: c+ k′ = F̂ (k, 1) where F̂ (k, 1) = F (k, 1) + (1− δ)k. This maximization is known as

the Functional Equation (FE) and it represents the problem as a recursive one, in which an infinite-dimensional

problem is reduced to a two-period problem.

Under the assumptions A4.1-A4.2 in SLP, it can be shown that i) the solution to the SP is a solution to the FE

for any level of k0, and ii) the sequence of capital investment decisions that achieves the maximization to the SP is

the same as that which achieves the max in the FE, and vice versa (given an added limit condition). These results

are embodied in Theorems 4.2-4.5 of the the text.

What is the point of this? Much more is known about the FE in terms of methods to solve and characterize its

solution. For instance, we would like to know if the FE is a well-defined problem. To answer such a question, we

may notice that the functional equation is a contraction. Define the operator T : C(X)→ C(X) which maps from

the space of continuous, bounded functions into itself. Then we may view the FE as

Tv(k) = max
k′
{u(F (k, 1) + (1− δ)k − k′) + βv(k′)},

8
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where we have once again subbed the budget constraint into the objective function input. Under Blackwell’s

conditions, given that this operator i) maps from C(X)→ C(X), ii) satisfies monotonicity and iii) satisfies discount-

ing given some β ∈ (0, 1), it is a contraction with modulus β. Further, under the Contraction Mapping Theorem,

we are guaranteed that a fixed point T v̂ = v̂ exists and it is unique.6

Once we have defined the conditions necessary to achieve a unique solution to the maximization problem, we

may examine properties of the value function as well as the argmax that achieves the maximizing sequence. In

particular, we denote the functions that determine the optimal path of consumption and capital to be the policy

functions ct = c(kt) and kt+1 = g(kt), respectively. Notice that any date t consumption or capital level is determined

by simply re-iterating the function back to date 0 capital stock k0.7

In addition, we may examine some of the inheritance properties that additional assumptions will pass on to the

value function v. In particular, we have

i. If u is increasing and F is increasing ⇒ v is increasing,

ii. If u is strictly concave and F is concave ⇒ v is strictly concave,

iii. If, in addition to the conditions for (ii), u is continuously differentiable and F is differentiable ⇒ v is differen-

tiable.

Optimizing with respect to the sole choice variable k′, we have the first-order condition:

u′(c) = βv′(k′) (5)

and the Envelope condition

v′(k) = u′(c)[Fk(k, 1) + 1− δ] (6)

which in combining yields

u′(c) = βu′(c′)[Fk(k′) + 1− δ],

which is simply the Euler Equation that we also achieved in the competitive equilibrium setup.

6This theorem involves defining a metric space. Thus, since we are dealing with the space of continuous and bounded functions, we

will choose the sup norm as our metric where ||f(x)− g(x)|| = sup
x
|f(x)− g(x)|.

7Notice that the period t+ 1 level of capital kt+1 = g(kt) can be rewritten as kt+1 = g(g(kt−1)) and so forth. Using some abuse of

notation, we may write kt+1 = gt+1(k0). Further, the consumption policy function depends on the current-period capital level; thus,

ct = c(kt) can be rewritten as ct = c(gt(k0)).

9
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2.2 Steady States and Convergence to Steady States

Let us consider the economy at a stationary point for the state variable capital. In the context of our neoclassical

model, a stationary point is defined by a level of capital k∗ such that g(k∗) = k∗, which also implies the same,

constant level of period consumption. At this point, our Euler equation above simply becomes

1

β
= Fk(k∗) + 1− δ. (7)

Thus, equation (7) describes a relationship that must be met in order for the economy to be at a point of rest (i.e. a

stationary point). While it is useful to analyze the economy at a stationary point, it is of greater interest to discover

i) if the point is unique, ii) if such a point even exists and iii) what are the dynamics that determine convergence

(or lack thereof) to the stationary point.

In this subsection, we will review a very particular example of a SP/FE problem that does lead to existence

and uniqueness with monotone convergence. In general though, such properties of stability should not be taken for

granted and solutions may not exist under fairly similar conditions/assumptions imposed on the economy.

Let’s now clearly define assumptions on the primitives of the model. We assume that F and u are continuous,

strictly increasing, strictly concave and continuously differentiable functions that satisfy the Inada conditions. From

these assumptions, it can be shown that there exists a level of capital k̄ > 0 such that F (k̄) = k̄ and this is the

maximum attainable capital stock, implying that we can restrict our attention to the interval [0, k̄]. Further, F and

u are bounded, as well.

Given these assumptions, and using the theorems from SLP Chater 4, we know that there exists a functional

equation solution v that is unique, bounded, continuous, strictly increasing and strictly concave. Further, the

corresponding policy function for capital g(k) is a continuous function that is strictly increasing in such a way that

the solution to v has a unique value for all levels of capital k.

Proposition 2.1. Given the above model assumptions, the continuous policy function for capital g(k) is strictly

increasing in capital.

Proof. The Envelope condition provides us

u′[F (k)− g(k)] = βv′[g(k)]

where u, F and v are strictly concave functions. Now, suppose instead that g is decreasing. Then, we observe

k′ > k ⇒ g(k′) ≤ g(k)

⇒ βv′[g(k′)] ≥ βv′[g(k)] (strict concavity of v)

⇒ u′[F (k′)− g(k′)] ≥ u′[F (k)− g(k)]. (Envelope condition)

By the strict concavity of u, this implies

F (k′)− g(k′) ≤ F (k)− g(k)

and after re-arranging

F (k′)− F (k) ≤ g(k′)− g(k).

10
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Because F is strictly increasing and k′ > k, the LHS of the inequality is positive-valued, whereas the RHS is

negative-valued, by assumption. Thus, a contradiction is attained and the policy function g must be strictly

increasing.

What of the stationary points for this model? There exists a trivial stationary point when the incoming capital

stock is 0 (i.e. k = 0). This is stationary because no capital can be produced tomorrow if there exists no capital

today. This is an uninteresting point, and we are more interested in finding interior stationary points in the interval

(0, k̄]. As we’ve shown, a stationary point is defined by 1
β = F ′(k∗) + 1− δ, which implies k∗ = F ′−1{ 1

β − (1 + δ)}.

Is this actually stationary? Since v is strictly concave, it is a property of such functions that

[v′(k)− v′(g(k))][k − g(k)] ≤ 0 ∀k ∈ [0, k̄]

and holds with equality (i.e. equal to zero) iff g(k) = k. For the first bracketed term, sub in equation for (5) for

v′(k′) (which is v′(g(k)) and sub in equation (6) for v′(k). This leads to

[Fk(g(k)) + 1− δ − 1

β
][k − g(k)] ≤ 0

We know that at k∗, the left term is equal to zero, which implies that k∗ = g(k∗) and this is in fact a stationary

point. What of the dynamics for this system? Since k∗ is a unique stationary point in the interior, the inequality

above is a strict one when k 6= k∗. Thus, when k < k∗, concavity of the production function⇒ F ′(k) > 1
β − (1 + δ),

and vice versa for capital above the steady state level.

Proposition 2.2. Let F, u and β satisfy the assumptions above. The corresponding policy function g has two

stationary points at k = 0 and k∗ = F ′−1{ 1
β − (1 + δ)} and for any initial stock of capital k0 ∈ (0, k̄], the sequence

{kt}∞t=0, defined by kt+1 = g(kt), converges monotonically to k∗.

Image of Figure 6.1 on SLP page 135.
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2.3 Linear Approximations

There are two relatively simple general methods for deciding whether a particular system is stable. The first is

known as the method of Liapounov, which is used for establishing global stability. The second approach is based

on linear approximations to the Euler equations. We will examine the implementation and usefulness of this latter

approach. In particular, we often care about the policy function g (where g may be a vector of equations) and

whether or not it is converging to some constant level of capital and at what rate. If the policy function is a linear

one, we can solve the linear system of equations; if the function is nonlinear, we can use counterpart theorems and

linear approximations to solve the system. First, let us review some of the linear theory. Much of what follows is

taken straight from SLP.

Linear Systems

A system of linear difference equations may be written as

xt+1 = a0 +Axt ∀t = 0, 1, 2, ... (1)

where xt ∈ Rn, a0 ∈ Rn and A is a square matrix. Both a0 and A contain constant scalars. If a point x̄ in this

sequence were stationary, we’d observe

x̄ = a0 +Ax̄⇒ x̄ = (I −A)−1a0,

given that the matrix (I−A) were non-singular. Let us further define the the deviation zt = xt− x̄ and now assume

that both (I − A) is non-singular and the equation zt+1 = Azt holds in describing equation (1). If this were true,

then (1) could be equivalently represented by

zt = Atz0. (2)

Characterizing the solution to (1) and hence the convergence of the sequence depends upon characterizing the

sequence {At}. So, what is known about this sequence? For all t, it is a square matrix, implying the decomposition

A = B−1ΛB, (3)

where B is non-singular and Λ is the Jordan matrix where Λii = Λi for all i = 1, 2, ..., k and 0 on the off-diagonal.

Each diagonal component Λi has the distinct characteristic roots λi of A on the diagonal, a 1 above each diagonal

element and 0 elsewhere. These characteristic roots are solutions to the equation det(A− λI) = 0.

Why use (3)? Define wt = Bzt and use (2) and (3) to show

wt =Bzt ∀t = 0, 1, 2... (4)

=BAzt−1

=ΛBzt−1

=Λwt−1

=Λtw0,

12
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where the powers of the Jordan matrix are easily computed (see page 145 of SLP). For a more applicable rep-

resentation of wt = Λtw0, plug in (4) to the LHS and RHS, explicitly writing out the deviations form for z to

get

B(xt−x̄) = ΛtB(x0 − x̄)

⇒xt = x̄+B−1ΛtB(x0 − x̄). (5)

Now, two central theorems to take us home:

Theorem 2.1. Let a0 be an n-vector and let A be a square matrix in n dimensions. Suppose the matrix I − A is

nonsingular and let x̄ = (I − A)−1a0. Then, the lim
t→∞

xt = x̄ for all sequences {xt} satisfying (1) if and only if the

characteristic roots of A are all less than one in absolute value.

That is to say, given the assumptions, if all the eigenvalues of A lie within the unit +/− unit interval, the

linear difference system converges in the limit. When not all of the characteristic roots of A are less than one in

absolute values, the initial conditions for the sequence {xt} become a factor, and the following theorem specifies

the necessary and sufficient conditions for convergence.

Theorem 2.2. Let a0 be an n-vector and let A be a square matrix in n dimensions. Suppose the matrix I − A

is nonsingular and let x̄ = (I − A)−1a0. Let B be nonsingular and Λ the Jordan matrix for A. Suppose the first

m diagonal elements of Λ are less than one in absolute value and the last n −m are euqal to or greater than one.

Given the system in (1), the lim
t→∞

xt = x̄ if and only if x0 satisfies

x0 = x̄+B−1w0

with w0i = 0 for i = m+ 1,m+ 2, ..., n.

Now, when we move from the clean world of linear difference equations to potentially nonlinear ones, we examine

the system

xt+1 = h(xt) ∀t = 0, 1, 2, ... (6)

where we hope to find a linear approximation to the function h at the stationary point x̄. If our initial condition

x0 is close to the stationary point, we can have some confidence that we have a good approximation of the actual

function h. I’ll now restate the previous two theorems in terms of a linear approximations to a nonlinear system.

Theorem 2.3. Let x̄ be a stationary point of (6) and suppose h is continuously differentiable in a neighborhood

N of x̄. Let A be the Jacobian matrix of h, evaluated at x̄. Further assume that I − A is nonsingular. If the n

characteristic roots of A are less than one in absolute value, there exists a neighborhood U ⊆ N such that if {xt} is

a solution to (6) with x0 ∈ U , then lim
t→∞

xt = x̄.

13
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What has changed? we are looking at the Jacobian matrix characteristic roots as compared to the roots of the

explicitly-given square matrix A in the linear case.

Theorem 2.4. Let the previous theorem hold but assume that A has m roots less than one in absolute value and

n−m that are equal to or greater than one. Then there is a neighborhood U ⊆ N and a continuously differentiable

function φ : U → Rn−m for which the matrix [φij(x̄)] has rank n −m, such that if {xt} is a solution to (6) with

x0 ∈ U and φ(x0) = 0, then lim
t→∞

xt = x̄.

Euler Equations

For this part, we will first address the problem in general notation and then lastly apply the results to our neoclassical

growth model. Further, As in the previous subsection, we will examine the linear case first, followed by the nonlinear

case, using the above theorems. In the neoclassical setting, we care about the evolution and convergence of the

capital stock to some stationary level. Thus, we are interested in the policy function g. While this is the ultimate

objective, we may not be working with enough information to do so; for instance, we may not know if the function

is differentiable or not. Thus, we will instead look at and apply the above results to the Euler equations of the

system.

In generalized notation, consider the problem of

max

∞∑
t=0

βtF (xt, xt+1)

where xt is a vector of n dimensions. Note: F is not the same as the production function in the neoclassical growth

model. Sorry for the confusion, but I am trying to stay consistent with SLP and Chari’s lecture. F is commonly

referred to as the return function. The first input of the return function is the x input while the latter is the y

input. In this setting, the Euler equations are

0 = Fy(xt, xt+1) + βFx(xt+1, xt+2) (7)

for all time periods. Given the standard assumptions on boundedness, continuity, increasing and concavity, the

optimal solution to this system is unique. For the linear case, let us suppose that F is quadratic, which implies that

the first derivatives are linear. The Euler equations can thus be written as

0 = Fy + βFx + F ′xyxt + (Fyy + βFxx)xt+1 + βFxyxt+2, (8)

where the first-derivative vectors are l-dimensional and the second-derivative ones are l × l. Take equation (8) and

plug in a stationary point x̄ to get

x̄ = −(F ′xy + Fyy + βFxx + βFxy)−1(Fy + βFx), (9)

assuming that the first term on the RHS is nonsingular. Given (9) and using the same deviation formula zt = xt− x̄,

we can perform painful algebra to get the rewritten Euler equation

0 = β−1F−1
xy F

′
xyzt + β−1F−1

xy (Fyy + βFxx)zt+1 + zt+2 (10)

14
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which is a second-order difference equation. We can more compactly summarize this within a matrix setup as

Zt+1 =AZt (11)

⇒

zt+2

zt+1

 =

J K

I 0

zt+1

zt


where J and K correspond to components of equation (10) above. Further, make note that the A matrix is 2l× 2l

in dimension. Now, we make use of the following proposition.

Proposition 2.3. Assume that Fxy and (F ′xy + Fyy + βFxx + βFxy) are nonsingular, and let the matrix A be as

defined in (11). Then, if λ is a characteristic root of A, so is 1
βλ .

Proof. See page 150 of SLP.

This theorem implies that if we have a characteristic root less than one in absolute value, then there exists a

corresponding root that is necessarily greater than one in absolute value, given that β ∈ (0, 1). Further, the A

matrix contains 2l roots, implying that l are greater than or equal to 1√
β

(in absolute value) while the other l are

less. This implies that no more than l roots are smaller than one. The following theorem states that if exactly l

roots are smaller than one, we have global stability.

Theorem 2.5. Let F : R2l → R be strictly concave and a quadratic function. Given that Fxy and (F ′xy + Fyy +

βFxx + βFxy) are nonsingular and x̄ is the unique stationary point, if the matrix A has l characteristic roots less

than one in absolute value, then for every x0 ∈ Rl, there exists a unique solution {xt} to the sequence problem such

that lim
t→∞

xt = x̄.

And now the nonlinear analogue:

Theorem 2.6. Assume that F is twice continuously differentiable in a neighborhood N around the steady state (x̄, x̄).

Let Fxx, Fyy and Fxy be the derivative matrices, evaluated at the stationary point and assume the nonsingularity of

Fxy and (F ′xy + Fyy + βFxx + βFxy). If the matrix A in (11) has l characteristic roots less than one in absolute

value, then for any x0 sufficiently close to x̄, the unique solution {xt} to the sequence problem satisfied lim
t→∞

xt = x̄.

The proof defines the nonlinear system with the difference equation

Zt+1 =H(Zt)

⇒

xt+2

xt+1

 =

h(xt+1, xt)

xt+1


where the Jacobian of the H matrix, evaluated at the steady state, leads to the matrix A from equation (11); that

is,

∂H(x̄, x̄)

∂xt+1
=

J K

I 0

 = A.

For the neoclassical growth model, with policy function g, the theorem implies that g must satisfy φ[g(k), k] = 0

for all k ∈ U . Further, if continuously differentiable, we have the derivative g′(k̄) = −φ−1
1 (k̄, k̄)φ2(k̄, k̄), where k̄ is

the stationary level of capital, through an application of the Implicit Function Theorem.
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The Application

Now, let us formally take a look at the deterministic neoclassical growth model. Here, the return function is simply

the utility function with the budget constraint subbed in:

F (x, y) = u[F (kt)− kt+1].

Once again, apologies for the notation: F on the LHS is the general return function while F on the RHS is the

neoclassical production function. Thus, Euler equation (7) is written

0 = −u′[F (kt)− kt+1] + βF ′(kt+1)u′[F (kt+1)− kt+2]. (12)

Take a second-order expansion, centered around the stationary point k̄:

0 =− F ′u′′ẑt + u′′ẑt+1 + βF ′′u′ẑt+1 + βF ′F ′u′′ẑt+1 − βF ′u′′ẑt+2

⇒ 0 =− 1

β
u′′ẑt + [(1 +

1

β
)u′′ + βF ′′u′]ẑt+1 − u′′ẑt+2, (F ′(k̄) = 1

β )

with deviation notation ẑt = kt − k̄ and each function is also evaluated with stationary point inputs. Given the

model assumptions, we know that u′ > 0, F ′ > 0 and F ′′ < 0. Using equations (9) and (10) from the general

setting,

Fxy = − 1

β
u′′ and Fyy + (1 + β)Fxy + βFxx = βu′F ′′.

Thus, the system in (11) becomes ẑt+2

ẑt+1

 =

1 + 1
β + F ′′/F ′

u′′/u′ − 1
β

1 0

ẑt+1

ẑt

 . (13)

which leads to the characteristic equation for this “A” matrix:

λ2 − [1 +
1

β
+
F ′′/F ′

u′′/u′
]λ+

1

β
= 0. (14)

After some examination, you should be convinced that there exists two positive roots for this equation; further,

one is less than one while the other is greater than 1
β .8 Without loss of generality, let’s make λ1 the smaller of the

roots. Thus, we have

0 < λ1 < 1 <
1

β
< λ2.

After a use of the square matrix decomposition, Theorem 2.6, we get

g′(k̄) = · · · = λ1

which leads to an approximation on capital stock convergence

kt+1 = k̄ + g′(k̄)[kt − k̄] = k̄ + λ1[kt − k̄]. (15)

Given λ1 ∈ (0, 1), we are guaranteed stable convergence to the steady state k̄.

8See graph on page 155 of SLP.
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3 Measure Theory and Markov Processes

When the neoclassical growth model is extended from a deterministic setting to one involving stochastic shocks

to the economy, measurability issues arise, as well as the desire to properly characterize (and be confident in) the

convergence of relevant measures of probability. Doing so requires a detour into the topic of measure theory. Further,

in providing some structure to the nature of the model’s stochastic shocks, it is often useful to characterize the

process as a Markov process so that we may leverage off the topics well-established results. For the course, the main

results and theorems are informally presented and the material does not appear to show up in test-taking settings.

With that being said, this material is nonetheless essential to fully understand what’s going on underneath the

hood, so to say. This section is presented at the most general level possible, covering the most basic and necessary

definitions and theorems. The following notes are taken almost exclusively from SLP Chapters 3, 11 and 12, as well

as from Sergio Ocampo-Diaz’s Math 2015 Summer Camp notes.

3.1 Introduction to Measure Theory

Definition 3.1. Let S be a set and let Σ be a family of subsets of S. Σ is called a sigma algebra if

i. ∅,S ∈ Σ,

ii. A ∈ Σ⇒ AC ∈ Σ, and

iii. An ∈ Σ ∀n = 1, 2, ...⇒ ∪nAn ∈ Σ.

Parts ii) and iii) of the definition are referred to as closed under complement and closed under countable union,

respectively. The σ-algebra can be as simple as containing just the empty set and the set Ω or, on the opposite

extreme, can be the collection of all possible subsets of Ω.

Definition 3.2. Let a set A be a collection of subsets of S and define Σi be the set of sigma algebras that contain

A. Then, B = ∩iΣi is the sigma algebra generated by A.

We call the pair (S,Σ) where S is any set and Σ is a sigma algebra is called a measurable space and any

set A ∈ Σ is called Σ-measurable. The set A is measurable with respect to the sigma algebra Σ if its elements

are identifiable in the sense that outcomes represented in A can be told apart from other outcomes, given the

information in Σ. A sigma algebra of special importance is the Borel sigma algebra.

Definition 3.3. Let S = R and Σ the set of open and half open intervals. The Borel algebra, noted by B is the

sigma algebra generated by Σ. Any set B ∈ B is called a Borel set.

So, the Borel algebra is the smallest sigma algebra that contains all of the open sets in the real line. This notion

can of course be generalized to higher, arbitrary dimensions; further, the Borel algebra can be defined for any metric

space as the smallest sigma algebra containing all the open balls.

Now, let us explicitly define what is meant by measure. Given a measurable space (S,Σ), a measure is simply a

function µ : Σ→ R with certain restrictions to guarantee consistency.
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Definition 3.4. Let (S,Σ) be a measurable space. A measure is an (extended) real-valued function that satisfies

the following conditions:

i. µ(∅) = 0,

ii. µ(A) ≥ 0, ∀A ∈ Σ,

iii. µ is countably additive; that is, for every disjoint, countable sequence {An}∞n=1 in Σ,

µ(∪An) =
∑
i∈I

µ(An).

If µ(S) <∞, then µ is called a finite measure. Further, if µ(S) = 1 then µ is said to be a probability measure.

A triple (S,Σ, µ) where S is a set, Σ is the sigma algebra and µ is the measure is called a measure space.9 The

triple is called a probability space if µ is a probability measure.

Definition 3.5. Let (S,Σ, µ) be a measure space. A proposition is said to hold almost everywhere or almost

surely if there exists a set A ∈ Σ such that µ(A) = 0 and the proposition holds only in Ac.

An example can be drawn from when comparing different functions that are similar to each other. We can say that

two functions (f and g) are equivalent almost everywhere, implying that f(x) = g(x) and the A = {x : f(x) 6= f(y)}

has a corresponding measure µ(A) = 0.

Measurable Functions and Lebesgue Integration

One can think of a function as mapping certain events in a given measure space to outcomes in another measure

space. A function is measurable if the sets that induce a given outcome are measurable.

Definition 3.6. Given a measure space defined by (Ω,Σ, µ), a real-valued function f : X → R is measurable with

respect to Σ (i.e. Σ-measurable) if

{x ∈ Σ : f(x) ≤ a} ∈ Σ ∀a ∈ R.

This definition is not as general as it could be, but it sufficient, given our focus in the course. If the domain in

question is a probability space, then f is called a random variable, where the function maps into the Borel sigma

algebra. We now introduce two types of functions: an indicator and a simple function. Let (S,Σ) be a measurable

space and consider the indicator function χA : S → R defined as

χA =

1 if s ∈ A

0 if s /∈ A

9Often times, it is easier to establish a measure on what is known simply as an algebra, which is in some sense smaller than the

sigma algebra. The two definitions differ in the sense that algebras pertain to subsets closed under finite unions and intersections, while

sigma algebras deal with countable unions and intersections. Generally, it is easier to define a measure on an algebra but to instead

work with a sigma algebra and all of its properties. This can be achieved through the application of extension theorems which prove

the unique equivalence of measures between algebras and sigma algebras. For convenience, these are left out. More detailed notes exist

in Chapter 7 of SLP.
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for some set A ∈ Σ. These functions are measurable, given that the set A is contained within the sigma algebra.

Now, consider functions that are finite-weighted sums of indicator functions. A simple function is defined as

φ(s) =

n∑
i=1

aiχAi(s),

where {Ai}ni=1 is a sequence of subsets of S and the ai are scalars. Using this, we can find a convenient result,

showing that any measurable function can in fact be expressed as the pointwise limit of a sequence of measurable

simple functions.

Theorem 3.1. Let (S,Σ) be a measurable space. If f : S → R is measurable, then there is a sequence of measurable

simple functions {φn} that converges pointwise to f . If f ≥ 0, the sequence can be chosen such that

0 ≤ φn ≤ φn+1 ≤ f ∀n.

We now proceed to address the issue of integration and make use of the Lebesgue integral, which is in some sense

a generalization of the Riemann integral. The Lebesgue is used because it is applicable to the class of measurable

functions, which is in fact larger than the space of Riemann integrable functions. The Lebesgue integral of a function

f : S → R+ is constructed by taking grids over the range of the function (i.e. the ai’s with 0 ≤ a1 ≤ a2 ≤ ... ≤ an).

From there, we define the set Ai = {s ∈ S : ai ≤ f(s) < ai+1} and the sum
∑
aiµ(Ai). The integral is simply the

limit of this sum as the difference in distance between the y’s shrinks to zero. First, look at the integral for simple

functions.

Definition 3.7. Let (S,Σ, µ) be a measure space and let f : S → R+ be a simple, measurable function with finitely

many values. The Lebesgue integral over the set A ⊆ S is defined as

ˆ
A

f(s)dµ =
∑
i

yiµ(Ai)

where we define the set Ai as

Ai = {s ∈ A : f(s) = yi}.

Now, let’s proceed to the more general case of any nonnegative and measurable function.

Definition 3.8. Let (S,Σ, µ) be a measure space. A measurable function f : S → R+ is said to be integrable on a

set A if there exists a sequence {fn} of integrable, simple functions converging uniformly to f on A. The Lebesgue

integral is thus defined as ˆ
A

f(s)dµ = lim

ˆ
A

fn(s)dµ.

An alternative definition makes use of the supremum of a set of simple functions, related to the function f .

Under this approach, we would define the integral as

ˆ
A

f(s)dµ = sup{
ˆ
A

fndµ : 0 ≤ fn(x) ≤ f(x),where fn are simple functions}.
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3.2 Markov Processes

When dealing with a stochastic environment, measurability issues may arise and this forces us to provide some

structure to the environment. For instance, using the functional equation in the presence of stochastic shocks,

labeled as s, we may consider the equation

v(x, s) = max
y∈Γ(z,s)

[F (x, y, s) + β

ˆ
S

v(y, s′)µ(ds′)] (1)

where x represents the state variable, y the decision variable, chosen from the feasible correspondence Γ. In this

problem, the agent observes a stochastic shock today s and must choose y, given the current-period return function

F and the discounted, expected value of future utility, represented by the second component of the RHS. This is

an expected value because the agent doesn’t observe tomorrow’s shock s′ but does observe the disribution of s′,

according to the measure µ. While reasonable, this approach is limited. In particular, future shocks may change or

exhibit serial dependence, while (1) leaves the distribution unchanged. To accommodate this more general setting,

we must consider functional equations of the form

v(x, s) = max
y∈Γ(x,s)

[F (x, y, s) + β

ˆ
S

v(y, s′)Q(s, ds′)] (2)

where Q(s, ·) represents a probability measure, depending upon the value of today’s shock s. Under the right

restrictions, the function Q is called a transition function. We now formally define this function and state some of

its properties.

Definition 3.9. Let (S,Σ) be a measurable space. A transition function is a function Q : S × Σ → [0, 1] such

that

i. for each s ∈ S, Q(s, ·) is a probability measure on (S,Σ), and

ii. for each A ∈ Σ, Q(·, A) is a measurable function, with respect to the sigma algebra.

Part (i) is simple enough to understand: you give me a realized value s from the possible set S and Q maps to

the probability of observing any possible value tomorrow s′. Part (ii) is less intuitive and less important for our

purposes. Note: the second input to Q can be a set. If this were the case, then Q would provide the probability of

any event s′ ∈ A of occurring, given the realization of s. Now, we proceed to define two operators associated with

the transition function. Let Q be a transition function on a measurable space (S,Σ). For any measurable function

f , define the Markov operator Tf as

(Tf)(s) =

ˆ
f(s′)Q(s, ds′) ∀s ∈ S. (3)

Recall that Q(s, ·) is a probability measure; thus, Tf is well defined and we can interpret (Tf)(s) as the expected

value of f next period, given today’s realization of s. Next, for any probability measure µ on (S,Σ), define the

adjoint of T T ∗µ as

(T ∗µ)(A) =

ˆ
Q(s,A)µ(ds) (4)

for all A ∈ Σ. Given that Q(·, A) is a measurable and bounded function (by definition), the function T ∗µ is well

defined, as well. Further, we may think of (T ∗µ)(A) as the probability that the state next period lies in the set A,

given the current realization of s, today.
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A few notational inclusions follow. For any measurable space (S,Σ), M+(S,Σ) is the space of nonnegative,

measurable, extended real-valued functions, B(S,Σ) is the space of bounded, measurable, real-valued functions and

Λ(S,Σ) is the space of probability measures on the aforementioned measurable space. Given this, we now post a

couple results with respect to the operators Tf and T ∗µ.

Theorem 3.2. The operator Tf defined in (3) maps Tf : M+(S,Σ)→M+(S,Σ).10

Theorem 3.3. The operator T ∗µ in (4) maps T ∗µ : Λ(S,Σ)→ Λ(S,Σ).

Now, we proceed with an important theorem that establishes the connection between the two operators.

Theorem 3.4. Let Q be a transition function on the measurable space (S,Σ) and consider the Markov operator

and the adjoint of T . For any function f ∈M+(S,Σ),

ˆ
(Tf)(s)µ(ds) =

ˆ
f(s′)(T ∗µ)(ds′) =

ˆ ˆ
f(s′)Q(s, ds′)µ(ds) ∀µ ∈ Λ(S,Σ). (5)

Equation (5) computed the expected value of a function tomorrow, and the theorem shows that one can compute

this expected value with either operator. This is particularly useful in a dynamic programming when we are

interested in computing the expected continuation utility, which is composed of the value function as in equation

(2). The transition function can be used not just for period-to-period probabilities but for n-step probabilities. In

particular,

Qn+1(s,A) = (TQn(·, A))(s) =

ˆ
Qn(s′, A)Q(s, ds′) (6)

is the probability of ending up in state A n+1 periods from now, conditioned on the realization of shock s today. This

can be computed through successive iterations of the Markov operator or through integrating over the transition

function raised to the nth power.

Sometimes we may wish to impose stronger properties on the stochastic environment (specifically, on the T

operator) to attain different results. Two mentioned here are the Feller property and the notion of monotonicity of

the transition function.

Definition 3.10. A transition function Q on (S,Σ) has the Feller property if the associated operator T maps the

space of bounded continuous functions on S into itself; that is, T : C(S)→ C(S).

This is a stronger assumption as the space of continuous bounded functions is obviously a subset of B(S,Σ).

Definition 3.11. A transition function Q on (S,Σ) is monotone if the associated operator T has the property

that for every nondecreasing function f : S → R, the function Tf is also nondecreasing.

For example, if we have some return (or value) function that is increasing in its state variable, the expected

value of that function (as represented by the Markov operator Tf) will also be increasing in the state variable.

Let’s introduce some notation to examine (partial) histories of stochastic shocks. We use st = (s1, ..., st) to

represent a particular history of shocks, up to period t < ∞. In addition, let (S,Σ) be a measurable space and

denote

(St,Σt) = (S × ...× S,Σ× ...× Σ)

10Theorem 4.2 also implies that the operator Tf also maps Tf : B(S,Σ)→ B(S,Σ).
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as the product space, where each S, and Σ is repeated t times above. We can then define the probability measure

µt(s0, ·) as

µt(s0, B) =

ˆ
A1

...

ˆ
At−1

ˆ
At

Q(st−1, dst)Q(st−2, dst−1)...Q(s0, ds1)

for any rectangle B = A1 × A2 × ... × At ∈ Σt. Notice that this probability measure is not just the probability of

ending up in state At, given initial shock s0 but is the probability of arriving at At hrough the particular string of

intermediate sets specified in B.

Definition 3.12. Let (Ω,F , P ) be a probability space. A stochastic process on (Ω,F , P ) is an increasing sequence

of sigma algebras (known as a filtration) F1 ⊆ F2 ⊆ ... ⊆ F , the measurable state space (S,Σ) and a sequence of

functions σt : Ω→ S such that each σt is measurable with respect to Ft.

Each function σt is a random variable that takes a value on the set of possible shocks S, given the occurrence

of some event on Ω. Actually, a stochastic process is simply the family of random variables σt presented above,

whereas the definition is technically describing a stochastic process that is adapted to the filtration {F}. In most

cases, we simply consider (S,Σ) = (R,B) where B represents the Borel sigma algebra. The reason that the sigma

algebras are increasing is because each date t sigma algebra Ft represents the sets of all possible random shocks

today, as well as the all possible histories. Therefore, it naturally follows that the number of possible histories grows

as t becomes larger. Let ω ∈ Ω be a fixed element of the sigma algebra; then, (σ1(ω), σ2(ω), ...) is called the sample

path of the stochastic process.

Now, let’s define the probability of a certain path. In particular, let C ∈ Sn and write

Pt+1,...,t+n(C) = P ({ω ∈ Ω : (σt+1(ω), ..., σt+n(ω)) ∈ C}) (7)

as the probability that the sample path lies within the set C from periods t + 1 to t + n. A stochastic process is

deemed stationary if the probabilities Pt+1,...,t+n(C) are independent of t, for all n and all C ∈ Sn. Before defining

a Markov process, we need to quickly establish the notion of conditional probability. Pt+1,...,t+n(C|at−s, ..., at−1, at)

is the conditional probability of the event {ω ∈ Ω : [σt+1(ω), ..., σt+n(ω)] ∈ C}, given that the event {ω ∈ Ω : στ =

aτ , τ = t − s, ..., t − 1, t} has occurred. Thus, given additional information about what is known to have occurred

in past periods has an affect upon the future probability of events.

Definition 3.13. A (first-order) Markov process is a stochastic process with the property that

Pt+1,...,t+n(C|at−s, ..., at−1, at) = Pt+1,...,t+n(C|at) (8)

for all t = 2, 3, ..., for all n = 1, 2, ..., for all s = 1, 2, ..., t− 1 and for all C ∈ Sn.

The first-order process simply implies that the probability of some future path is independent of all past obser-

vations except for the most recent period. This can of course be generalized to higher-orders. If the conditional

probability Pt+1(A|a) is independent of t for all a ∈ S, the Markov process is said to have stationary transitions,

which is different from a stationary process. One more definition!

Definition 3.14. Let (X,X ) and (Y,Y ) be measurable spaces. A stochastic kernel on {X,Y } is a function

P : X × Y → [0, 1] such that
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i. for each a ∈ X, P (a, ·) is a probability measure on (Y,Y ), and

ii. for each B ∈ Y , P (·, B) is an X -measurable function.

Thus, a transition function is a stochastic kernel where the two spaces (X,X ) and (Y,Y ) coincide with one

another.

3.3 Convergence of Markov Processes

In the deterministic neoclassical growth model, we were able to characterize some properties of the steady state

for the capital stock (denoted k̄ or k∗) and examine settings in which certain model assumptions on the primitives

led to global, monotone convergence. Within the context of the model, this implied that given any initial stock

of capital, rational agents would continually choose future capital kt+1 in a way that eventually converged to a

constant k∗, and there the model would stay forever. With the introduction of stochastic shocks to the model, the

notion of stationary points and convergence must be adjusted since Markov processes do not, in general, converge

to a constant value. Recall that for the stochastic growth model, the state of the economy in any given period

is summarized by both the aggregate capital stock and the current period shock. Also in this model, we are

given/derive the law of motion for capital φ, the policy function for capital g and the transition function for the

stochastic shock Q. Moving forward, the idea is that if we are given φ, g and Q, we can formulate another transition

function P to determine the probabilistic evolution of the states of the economy through time.

3.3.1 Finite State Space and Markov Chains

Recall that for a transition function Q on a measurable space (S,Σ), the adjoint operator T ∗ maps the set of

probability measuresΛ(S,Σ) into itself. Thus, if we have the date 0 probability measures µ0, then we can use the

adjoint operator to recursively arrive at the date t measure by means of µt = T ∗µt−1. Thus, if we are interested

in the convergence of the stochastic process {st}, it makes sense that we should be interested in convergence of

the probability measure {µt}, as well. We call a probability measure µ∗ an invariant probability measure if

being the probability measure over st in period t implies it is also the probability measure over st+1 in period t+ 1.

Put more technically, an invariant probability measure is a fixed point of the adjoint operator; that is, T ∗µ∗ = µ∗.

This section deals with defining properties of the transition function Q that are sufficient to guarantee existence,

uniqueness, convergence and robustness.

To begin, let us first start with cases in which the state space S consists of a finite number of elements, such

that S = {s1, ..., sl} and Σ contains all the subsets of S. A Markov process on a finite state space is called a

Markov Chain. When S is a finite set, a probability measure on the space is a vector p in the l-dimensional

simplex: ∆l = {p ∈ Rl : p ≥ 0and
∑
pi = 1}. Thus, we use the Markov matrix: the l × l matrix Π such that

individual elements πij = Prob(si, {sj}). In this context, individual rows represent todays shock s, whereas the

columns represent states tomorrow. Therefore, each row must sum to unity, across all future states of the world. In

addition, let ei be an l-dimensional row vector with 1 in the ith position and zeros elsewhere. Now, a couple quick

tricks:
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i. If the current state is si, then denote todays probability distribution as ei such that the distribution over next

period’s state is

eiΠ = πi,

ii. If the unconditional distribution over period t’s state is the p, then the distribution over the state in period

t+ 1 is given by

p̂j =

l∑
i=1

piπij

for all states tomorrow j = 1, ..., l.

For (i), because today’s state has been realized and is si, there is certainty that si has occurred; thus, we may use

the distribution ei. For (ii), we do not know the outcome of state t and our instead given a distribution of outcomes.

To arrive at a probability of state j in period t + 1, we multiply the probability of any state i in t + 1 times the

probability of going from state i to j in period t+ 1, and then sum these terms. Note: (ii) is a scalar.

Part (ii) above generalizes for the entire Markov matrix Π. In particular, if the probability distribution over the

state in period t is p, then the probability distribution over the state two periods ahead is pΠ2 and this can be done

for arbitrary n-step transitions. Further, if the initial state shock is si, the the probability distribution over states n

periods ahead is eiΠ
n. Thus, it makes sense to look at the sequence {Πn} which is a sequence of Markov matrices.

Definition 3.15. A set E ⊆ S is an ergodic set if prob(si, E) = 1 for si ∈ E and no proper subset of E has this

property.

Essentially, when dealing with Markov matrices, an ergodic set is a set of elements in the state space where

there is zero probability of leaving that set. This notion is best understood through examples. Refer to Chapter

11 of SLP and/or other internet sources for this aid. When each row vector of the Markov matrix Π converges to

a constant for the limit of Πn, we call this an invariant distribution.

Theorem 3.5. Let S = {s1, ..., sl} be a finite set and let the Markov matrix Π define transition probabilities on S.

Then

a. S can be partitioned into M ≥ 1 sets,

b. The sequence { 1
n

∑n−1
k=0 Πk}∞n=1 converges to a stochastic matrix Q, and

c. Each row of Q is an invariant distribution.

Note that this theorem does not say that the sequence {Πk} converges; instead, it is the average of matrices in

the sequence that will converge. While multiple ergodic sets can occur, we would like to find a set of conditions to

guarantee that only one unique ergodic set arises.

Theorem 3.6. Let S = {s1, ..., sl} be a finite set with the Markov/transition matrix Π on states in S. Then Π has

a unique ergodic set if and only if ∃n ≥ 1 for which at least one column of Πn has all strictly positive probabilities.

In this case, Π has a unique invariant distribution p∗ such that each row of Q is equal to p∗. Thus, for any initial

distribution p0, p0Q
∗ = p∗.
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The necessary and sufficient requires that there exists some state j such that for all states i, there is a positive

probability of ending up in state j in n periods. To prove the unique convergence of the sequence {p0Πk} for any

given initial distribution p0 requires use of the Contraction Mapping Theorem. Lemma 11.3 and Theorem 11.4

of SLP provide the necessary machinery to achieve such a result and they are left out here to save on space. To

summarize, the main results are

1. S can always be partitioned into 1 or more ergodic sets and the sequence of averages { 1
n

∑n−1
k=0 Πk}∞n=1 converges

to a stochastic matrix Q where the rows of Q are invariant distributions.

2. If the conditions of Theorem 3.6 hold, there is a unique ergodic set. In this case, all the rows of Q are identical

where each row vector p∗ is the same unique invariant distribution, and

3. If the conditions of SLP Theorem 11.4 hold, the sequence {Πn} converges to Q and the sequence {pn} = {p0Πn}

converges to the invariant distribution p∗.

3.3.2 Weak Convergence

We now proceed to define more general cases of convergence in which the state space is potentially not a finite set

as well as provide two separate definitions of convergence.

Definition 3.16. Let (S, ρ) be a metric space, let {µn} and µ be measures in Λ(S,B) and let C(S) be the space of

bounded, continuous, real-valued functions on S. Then {µn} converges weakly to µ if

lim
n→∞

ˆ
fdµn =

ˆ
fdµ ∀f ∈ C(S).

This definition pertains to the limits of the expected values of the class of function in C(S). Weak convergence

is very often all we care about in the context of describing the dynamics of an economic system. However, there is

a stronger concept that is worth mentioning.

Definition 3.17. Let (S,Σ) be a measurable space and let {µn} and µ be measures in Λ(S,Σ). Then {µn} con-

verges strongly to µ if

lim
n→∞

ˆ
fdµn =

ˆ
fdµ ∀f ∈ B(S,Σ)

and if in addition the rate of convergence is uniform for all f ∈ B(S,Σ) such that ||f || = sup
s∈S
|f(s)| ≤ 1

where B(S,Σ) refers to the space of bounded, measurable functions with respect to the sigma algebra Σ. SLP

prefers to present the topic of proving uniqueness and convergence in the strong sense because it parallels the same

methods employed for Markov chains in a finite state space. While this is helpful, it is excluded from these notes,

as we generally only care about characterizing weak convergence of Markov processes in this course and in the SLP

text.

For the remainder of this section, we will be concerned with sequences {µn}∞n=0 of probability measures defined

by µn+1 = T ∗µn where µ0 is the initial probability measure and T ∗ is the adjoint operator. A probability measure

µ∗ is called invariant under T ∗ if it is a fixed point of the operator; that is, T ∗µ∗ = µ∗. We will assume that (S, ρ) is

a metric space and B is the Borel sigma algebra. The objective is to find one or more families of sets A ⊂ B such
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that convergence of the measures of sets in A implies weak convergence. The following theorem provides several

different ways in which to characterize weak convergence.

Theorem 3.7. Let {µn} and µ be probability measures on (S,B). Then the following four conditions are equivalent:

a. lim
n→∞

´
fdµn =

´
fdµ ∀f ∈ C(S),

b. for every closed set F , lim sup
n→∞

µn(F ) ≤ µ(F ),

c. for every open set G, lim inf
n→∞

µn(G) ≥ µ(G), and

d. lim
n→∞

µn(A) = µ(A), for every set A ∈ B with µ(∂A) = 0

where ∂A is the boundary of A.

Part (a) corresponds to the previously provided definition of weak convergence whiles parts (b) and (c) provide

set definitions for convergence. Theorem 3.7 highlights the variety of ways in which one can prove weak convergence,

given the problem at hand. Note: The definitions of convergence above are also known as convergence in distribution,

which may be a more familiar term and concept to you. Theorem 3.8 provide a criterion for weak convergence in a

finite-dimensional Euclidean space.

Theorem 3.8. Let {µn} and µ be probability measures on (S,B) where S ⊆ Rl, and let A ⊆ B be a family of sets

such that

a. A is closed under finite intersection, and

b. for every x ∈ S and ε > 0, there exists A ∈ A such that x ∈ Å ⊆ A ⊆ b(x, ε),

where Å denotes the interior of A relative to S and b(x, ε) is the epsilon ball around x with the metric ρ. Then

µn(A)→ µ(A) for all A ∈ A implies µn → µ.

Now, a brief review of the main theorems that provide sufficient conditions for the weak convergence of a Markov

process. In what follows, we assume that the set S ⊆ Rl. We use the transition function P on the measurable space

(S,B) with the operators T : B(S,B) → B(S,B) and T ∗ : Λ(S,B) → Λ(S,B). Further, recall that a transition

function P has the Feller property if for any bounded, continuous function f , the function Tf is also continuous

(that is, T [C(S)] ⊆ C(S) ). Also, a transition function P is monotone if for any bounded, increasing function f ,

the function Tf is also increasing.

Theorem 3.9. If S ⊂ Rl is compact and P has the Feller property, then there exists a probability measure that is

invariant under P .

For the proof, such an invariant measure turns out to be the sample average of the iterations of the adjoint

operator.11 Theorem 3.9 does not rule out the existence of multiple invariant distributions in the limit. To

achieve results for convergence to a unique, invariant distribution, we use the additional stronger assumptions of

monotonicity and Assumption 3.1

11Theorem 12.10 with proof in SLP.
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Assumption 3.1. There exists c ∈ S, ε > 0 and N ≥ 1 such that PN (a, [c, b]) ≥ ε and PN (b, [a, c]) ≥ ε.

This assumption is referred to as a mixing condition used to ensure uniqueness of the invariant measure and

further imposes boundedness conditions on the expected value of any bounded, measurable and nondecreasing

function.

Theorem 3.10. Let S = [a, b] ⊂ Rl. If P is monotone, has the Feller property and satisfies assumption 3.1, then

P has a unique invariant probability measure µ∗ and T ∗µ0 → µ∗ for all µ0 ∈ Λ(S,B).

Thus, Theorem 3.10 characterizes conditions of a transition function that are sufficient for guaranteeing weak

convergence to an invariant probability measure. These results have applications within the framework of the course,

including topics in stochastic dynamic programming, incomplete markets and more.

4 The Stochastic Neoclassical Growth Model

Convergence to a steady state in the standard growth model implies smooth convergence to some constant level.

Modern macroeconomic data seems to contradict this description, as aggregate time series often show continued

growth in the levels of consumption, capital, etc. Thus, a standard fix to such issues is adding some trend in growth

to the data, in terms of technology and population. Even then though, these time series do not conform well to

historic data, as history is wrought with the ups and downs of the business cycle. Thus, a logical extension to the

standard model is the introduction of uncertainty or randomness. While this can be accomplished in different ways,

our simplified model will simulate randomness through stochastic shocks to the productivity factor associated with

the production function. While the solution approach is made more complicated, much of the same methods and

results are achieved here as in the deterministic case.

As a first step, let us slightly augment the neoclassical production function to include a productivity factor At

which is a random variable, susceptible to a finite set of possible values in any given period. Thus, period t output

is now

At(s
t)F (kt, lt),

where At(s
t) is a function of the history of random shocks st = (s0, s1, ..., st). Here, the superscript implies

the history while the subscript implies the realized shock at the given date. Further, we assume that the shocks

occur in some discrete and finite space. In this sense, all of the quantities in the model are now functions of this

randomness; thus, we write (ct(s
t), kt+1(st), yt(s

t), lt(s
t)).

Under this setting, the representative agent is faced with the following maximization problem:

v∗(k0) = max
ZH

∑
t

∑
st

βtµt(s
t)u(ct(s

t))

s.t.
∑
t

∑
st

pt(s
t)[ct(s

t) + kt+1(st)− (1− δ)kt(st−1)] =
∑
t

∑
st

pt(s
t)[wt(s

t)lt(s
t) + rt(s

t)kt(s
t−1)]

along with the usual non-negativity constraints. Note that the measure µt(s
t) is a probability measure such
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that
∑
st µt(s

t) = 1.12 In addition, the firm chooses inputs to maximize profits in the problem

max
ZF

∑
t

∑
st

pt(s
t)[yt(s

t)− rt(st)kft (st)− wt(st)lft (st)].

s.t. yt(s
t) ≤ A(st)F (kft (st))

and the aggregate resource feasibility requirements

kt(s
t−1) = kft (st)

lt(s
t) = lft (st)

ct(s
t) + kt+1(st) = A(st)F (kft (st)).

Notice that the firm’s demand for capital inputs, which is influenced by the date t shock, is restricted by the

amount of capital that consumers chose in the previous period, which is only influenced by shocks up to date t− 1.

To add more structure to the nature of the stochastic shocks, let us assume that the distribution of a specific

date t+ 1 shock st+1 behaves as a first-order Markov Chain and may be written as

µ(st+1|st) = µ(st+1|st) ≡ the probability of event st+1 given the realized st.

In the general setting, a shock is conditioned on the history of shocks st, whereas now it simply is a function of

last period’s value. These probabilities can be further represented by a transition matrix P where the element Pi,j

represents the probability of st+1 = state j tomorrow, given st = state i, today. Thus, rows represent the current

state and columns represent possible future states. As covered in Chapter 3, we must have
∑
j Pi,j = 1 ∀i.

The first welfare theorem implies that we may rewrite the representative agent’s problem as the social planner’s

problem:

max
{ct}∞t=0,{kt+1}∞t=0

∑
t

∑
st

βtµ(st|st−1)u(ct(s
t))

s.t. ct(s
t) + kt+1(st) = A(st)F (kt(s

t−1)) + (1− δ)kt(st−1)

or we may equivalently rewrite this stochastic sequence problem as the stochastic functional equation, also known

as the Bellman equation:

v(k, s) = max
c,k′
{u(c) + β

∑
s′|s

µ(s′|s)v(k′, s′)}

s.t. c+ k′ ≤ A(s)F (k, s) + (1− δ)k

where both problems are subject to the same non-negativity constraints on consumption, labor and capital.

Notice what has changed for the FE: in the deterministic neoclassical growth model, the state of the economy was

entirely summarized by the level of capital k, whereas now, the state of the economy depends upon the capital

12The summation over
∑
st can be interpreted as the possible realizations of si that may occur at date t, given the observed history

(s0, s1, ..., st−1). Thus, the probability measures µt(·) are represented as unconditional probabilities, but technically depend upon the

path of shocks that have already occurred.
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stock and current-period shock s. Under weak conditions, we have v∗(k, s) = v(k, s) and through applications of

the Blackwell conditions, we can once again show that a unique solution exists.13

Definition 4.1. The conditional distribution function µ(s′|s) is monotone if for all increasing functions h(s′),

∑
s′

h(s′)µ(s′|s) ≥
∑
s′

h(s′)µ(s′|ŝ)

if and only if s ≥ ŝ.

Notice that this definition coincides with the more general definition of a monotone transition function: the

Markov operator, which computes the expected value of the increasing function h, is an increasing function, as well.

Let us further define (without loss of generality) a natural ordering of states that exists for the random variable

A(s). That is to say, let us assume that A(s) increases in s. Under this stochastic setup, the same inheritance

properties can be endowed upon the value function. These are

i. If u and F are increasing functions, this implies v is increasing in k.

ii. If u is strictly concave and F is concave, this implies v is strictly concave.

iii. If, in addition to the conditions for (ii), u and F are continuously differentiable, this implies v is continuously

differentiable.

iv. If µ is monotone, then v is increasing in s.

Through the Theorem of the Maximum, the policy functions c(k, s) and g(k, s) are single-valued, continuous

functions. Further, by the monotonicity of µ, these policy functions are increasing in both k and s. Thus, higher

levels of capital and higher levels of positive productivity shocks, leads to an increase in the optimal level of both

consumption and capital investment.14

5 Search and Unemployment Models

A useful subset of models that lends itself to stochastic dynamic programming is those dealing with search and

unemployment for some agent worker. These models attempt to characterize the matching process that takes

place between a worker and hiring firms. This section will present a very basic model (known as the McCall

model) to introduce some of the fundamental concepts. One thing that becomes apparent very quickly with these

models is that there exists a variety of small adjustments that can be introduced into the modeling environment

in an attempt to capture real-life dynamics in the job matching market. While these models may be only briefly

discussed in recitation, they do seem to make appearances on course exams as well as the midterms; therefore, they

merit some attention. The following notes are taken entirely from Chapter 6 of Ljungqvist and Sargent’s text.

13For the case in which the distribution of the shocks is continuous, the stochastic Bellman equation simply integrates over the domain

of possible values. We use the form v(k, s) = max{u(c, s) + β
´
v(k′, s′)dG(s′|s)}, where G(s′|s) is some conditional distribution CDF.

14Note that when the stochastic process s is assumed to be independent and identically distributed, the conditional distribution

function µt(st+1|st) simply becomes µ(st+1) and is defined as monotone, trivially.
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5.1 Mathematical Preliminaries

First, we must briefly review a couple useful results from probability theory. For this section, we will utilize some

cumulative probability distribution function F (p) = Prob{P ≤ p} where we assume that F (0) = 0, implying that

p only takes on non-negative values. Lastly, we also assume that these distributions have some upper bound B

such that we observe no p larger and where F (B) = 1. Together, these imply that there exists zero probability of

observing an observation p̃ outside of the interval [0, B]. In addition, given some CDF, the expected value of the

random variable p, denoted E[p] is defined by

E[p] =

ˆ B

0

pdF (p) =

ˆ B

0

pf(p)dp, (1)

where f(p) denotes the probability density function for the random variable. Given some manipulation, we also

have the equivalent expression for the mean

E[p] = B −
ˆ B

0

F (p)dp.15 (2)

In this section, we will deal with situations in which the economic agent must maximize his decision over a set

of discrete choices. Thus, we will encounter use of the max operator. Note, for n independent and identical draws

of pi from the cumulative distribution function F (p), the Prob{max(P1, P2, ..., Pn) < p} = F (p)n.

Lastly, we introduce the concept of a mean-preserving spread. As can be grasped from the title, this refers to

analyzing/comparing multiple distributions which are characterized by the same mean. In particular, we consider

a class of distributions, indexed by some parameter r in the set R. We assume that F (0, r) = 0 and F (B, r) = 1

for all possible distributions in the set/class. These distributions carry the same expected value for the random

variable p; thus, we write ˆ B

0

[F (p, r1)− F (p, r2)]dp = 0. (3)

Further, two distributions, indexed by r1 and r2 satisfy the single-crossing property if there exists a p̂ ∈ (0, B)

such that

F (p, r2)− F (p, r1) ≤ 0 when p ≥ p̂ (4)

and vice versa, whereby both inequality signs are flipped. Essentially, this property states that as p increases in

value from 0 to B, the difference will switch from negative to positive value at only one point p̂. These are CDFs so

this means that at p̂, there is equal probability of observing values below (or above) p̂ across the two distributions.

Further, there is more probability mass to the left of F (p, r1) for all p larger than p̂. When properties (3) and (4)

15This can be obtained by applying integration-by-parts formula
´ b
a udv = uv −

´ b
a vdu and evaluate at the endpoints {0, B}. Thus,

we have
ˆ B
0

pdF (p) =pF (p)
∣∣∣B
0
−
ˆ B
0

F (p)dp

=[B(1)− 0F (0)]−
ˆ B
0

F (p)dp

=B −
ˆ B
0

F (p)dp.
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are observed together, we say that the distribution indexed by r2 has been obtained from the distribution indexed

by r1 by a mean-preserving spread. These two conditions, imply

ˆ y

0

[F (p, r2)− F (p, r1)]dp ≥ 0 ∀y ∈ [0, B]. (5)

5.2 The McCall Model

Here we present McCall’s model of intertemporal job search. We consider an unemployed worker who is searching

for a job under the following circumstances: each period the worker draws an i.i.d. offer from the wage distribution

F (w) where F (·) has the same properties as before, including the boundary conditions [0, B]. The worker may

either reject this wage offer, and receive unemployment compensation c > 0 that period, or may accept the offer,

receiving w for the period and every period forward. This game takes place over an infinite horizon. This model is

indeed simple as neither quitting or firing is permitted.

In period t, the worker’s income is denoted yt. This worker chooses whether to accept or reject the offer in

attempt to maximize lifetime expected utility
∑∞
t=0 β

tyt, where the discount factor β is assumed between 0 and 1.

What are the factors that determine acceptance or rejection in this environment? Given that the worker is aware

of the properties of the cumulative distribution function, he may choose to forego an offer wt > c today because it

is highly probable that future offers will be even larger than wt. Thus, he will incur some opportunity cost in the

pursuit of a higher future wage. The value function v(w) satisfies the Bellman equation

v(w) = max
accept,reject

{ w

1− β
, c+ β

ˆ B

0

v(w′)dF (w′)}. (6)

A common way to analyze these problems is to identify/determine a reservation wage w̄; that is, a wage at

which the worker is indifferent between accepting or and rejecting the offer w̄. Put differently, any offer above

the reservation wage, the worker will accept, and any offer below the reservation wage, the worker will reject and

continue to search. Given this, we can reformulate the Bellman equation to

v(w) =


w̄

1−β = c+ β
´ B

0
v(w′)dF (w′), if w ≤ w̄

w
1−β , if w ≥ w̄,

(7)

where the decision to reject is on top and the decision to accept on bottom. Since this takes place over an

infinite horizon, accepting the offer w today is accepting the infinite discounted stream of w, leading to w
1−β .

Notice that the decision to reject is equal to the infinite discounted sequence of the reservation wage. This must

hold, by definition of the reservation wage. Thus, given the top row of the value function, the reservation wage is

w̄ = (1− β)[c+ β
´ B

0
v(w′)dF (w′)].

To gain some more insight into this representation of the reservation wage, we can look at a couple other ways

to see how the particular value of the wage is determined. Specifically, evaluate the value function at w̄ and equate
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the accept/reject offers:

w̄

1− β
=c+ β

ˆ w̄

0

w̄

1− β
dF (w′) + β

ˆ B

w̄

w′

1− β
dF (w′) (8)

⇒ w̄

1− β

ˆ w̄

0

dF (w′) +
w̄

1− β

ˆ B

w̄

dF (w′) = c+ β
w̄

1− β

ˆ w̄

0

dF (w′) +
β

1− β

ˆ B

w̄

w′dF (w′)

⇒ w̄

ˆ w̄

0

dF (w′)− c =
1

1− β

ˆ B

w̄

(βw′ − w̄)dF (w′)

⇒ (w̄ − c) =
β

1− β

ˆ B

w̄

(w′ − w̄)dF (w′) (After adding w̄
´ B
w̄
dF (w′) to both sides)

The lefthand side of this equation is the (opportunity) cost of searching one more time when the offer of w̄ is in

hand (i.e. you will earn c by rejecting when you could have earned w̄− c more if you had accepted). The righthand

side of the equation is the expected benefit of searching one more time. β
1−β represents a one-period discount + the

infinite discounted sequence of accepting the offer next period. Lastly, the term
´ B
w̄

(w′ − w̄)dF (w′) represents the

expected surplus value of an accepted wage offer (i.e. the wage value in excess of the reservation wage).

If we examine the RHS of the equation, we can redefine it as some function of the current wage offer in hand:

h(w) =
β

1− β

ˆ B

w

(w′ − w)dF (w′). (9)

What are its properties? We know h(0) = β
1−βE[w] and that h(B) = 0. h(w) is differentiable with derivative16

h′(w) = − β

1− β
[1− F (w)] < 0.

It can also be verified that the second derivative is positive, suggesting a function with intercept βE[w]
1−β and with

a diminishing negative slope that tends to zero. Now, plotting the line w − c and h(w) one can obtain a unique

solution at the intersection in the positive quadrant.

Another useful characterization comes from expanding the initial equation (8) to

w̄ − c =
β

1− β

ˆ B

w̄

(w′ − w̄)dF (w′) +
β

1− β

ˆ w̄

0

(w′ − w̄)dF (w′)− β

1− β

ˆ w̄

0

(w′ − w̄)dF (w′)

=
β

1− β
E[w]− β

1− β
w̄ − β

1− β

ˆ w̄

0

(w′ − w̄)dF (w′),

re-written to

w̄ − (1− β)c = βE[w]− β
ˆ w̄

0

(w′ − w̄)dF (w′),

and after applying integration by parts to the righthand side and rearranging some terms, we get

w̄ − c = β(E[w]− c) + β

ˆ w̄

0

F (w′)dw′. (10)

Once again,we obtain a not so intuitive expression on the righthand side for the expected benefit of searching

one more period. Let’s define the function

g(s) =

ˆ s

0

F (p)dp (11)

and examine its properties. In particular g(0) = 0, g(s) ≥ 0, g′(s) = F (s) > 0 and g′′(s) = F ′(s) = f(s) > 0

for all s. Once again, we can equate the two equations to find a solution for the reservation wage. This solution

16Use Leibniz’s rule: Let φ(t) =
´ β(t)
α(t)

f(x, t)dx. Then φ(t)′ = f(β(t), t)β′(t)− f(α(t), t)α′(t) +
´ β(t)
α(t)

ft(x, t)dx.
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w̄ is the same solution obtained form the previous formulations, of course. What can be taken away from this

setup? First, an increase in unemployment compensation will increase the reservation wage. The increase in c will

shift both equations down but both are characterized by positive slopes where the RHS of (10) is increasing in w;

thus, the new equilibrium reservation wage will be larger (i.e. w̄(c+ ∆c) ≥ w̄(c). Secondly, holding unemployment

compensation constant, a mean-preserving increase in risk causes w̄ to increase, as well. This quality can be proved

by looking at (11) and recalling properties of a mean-preserving spread. In particular, (5) shows that if r2 has been

obtained by a mean-preserving spread over r1 then taking the RHS of the cost/benefit equation (10) we observe

β(E[w]− c) + β

ˆ w̄

0

F (w′, r2)dw′ −
[
β(E[w]− c) + β

ˆ w̄

0

F (w′, r1)dw′
]

⇒β
ˆ w̄

0

[F (w′, r2)− F (w′, r1)]dw ≥ 0

by definition for all possible values in the support. Thus, an increase in risk leads to a positive shift in the curve,

representing expected benefit of search. Ultimately, this leads to an increase in the reservation wage. What insights

could this possibly offer? Wages are bounded below by 0 and workers have unemployment compensation c to fall

back on. Therefore, an increase in risk generally means more volatility in wage offers in the positive direction, given

the bound. Knowing this, a worker is more inclined to wait another period and see if an exceptionally high job offer

is made.17

Given this model setup, it is easy to calculate the probability of waiting some length of time until a job offer is

accepted. In particular, define N as length of time until an offer is accepted. Given a reservation wage, a worker

rejects an offer with probability λ =
´ w̄

0
dF (w′) in any given period, and accepts with probability (1−λ). Thus, we

can predict waiting times according to a geometric probability distribution. The probability of waiting N periods

until acceptance is simply λN−1(1−λ), and the average wait time for a worker until accepting an offer is (1−λ)−1.18

Lastly, it may be of benefit to allow for the possibility that workers can be fired; thus, accepting a wage offer

does not ensure a lifetime income stream of w. Thus, after accepting a job in period t, the worker now faces a

probability α of being fired in every subsequent period. If fired, the worker is not allowed to search in that period

and instead receives unemployment compensation c. In the following periods, we are back to where we started:

the worker fields job offers and decides whether to accept or continue searching. The Bellman equation would then

become

v̂(w) = max
accept,reject

{w + β(1− α)v̂(w) + βα[c+ βE[v̂], c+ βE[v̂]},

where E[v̂] =
´
v̂(w)dF (w). Under the reservation wage setup, we get

v̂(w) =


w+βα[c+βE[v̂]]

1−β(1−α) , if w ≥ w̄

c+ βE[v̂], if w ≤ w̄,

17What if the worker was allowed to quit his job? If this were allowed in the game, little would change in the way of rational

decision-making. To see, consider the fact that there are now three scenarios: 1) accept the wage and keep job forever, 2) accept the

wage but quit after t periods, or 3) reject the wage and continue the job search. By drawing out the respective Bellman equations, one

can see that a worker would never prefer the second scenario. Thus, its inclusion in this model would only add unnecessary complexity.

On the contrary though, people choose to quit jobs all of the time; thus, the model should find ways to incorporate such outcomes.
18Note that these qualities depend heavily upon the fact that the reservation wage is fixed throughout time. Would these results

change if we diverged from an infinite horizon to a finite horizon environment? Also, what if randomness was incorporated into the

worker’s job preference and/or if the worker faced short-term shocks in demand for liquidity?
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where w̄ solves
w̄ + βα[c+ βE[v̂]]

1− β(1− α)
= c+ βE[v̂],

which can be rearranged as
w̄

1− β
= c+ β

ˆ
v̂(w′)dF (w′).

One of the main implications of this model is that the firing value function v̂(w) is strictly less than the v(w)

for all w ∈ [0, B]. Intuitively, no agent would rationally choose to quit a job in the standard model; thus, no agent

would prefer to be fired from a job, once they have accepted a job offer. Given this relationship, the reservation

wage ˆ̄w is strictly lower than w̄. Why? Workers are less likely to hold out for a higher/better job offer next period

if they know it is more probable that they will not retain that job forever.

Consider an economy with a unit mass of agents, i ∈ [0, 1], each of them that can be in any of the two states,

employed or unemployed, s ∈ {E,U}. Then the Markov matrix Π is given by:

Π =

 1− α α

1− λ λ


The invariant distribution, µ∗, which is the fraction of time an agent i spend in each state. If we let µt be the

fraction of employed agents (and thus 1− µt the fraction of unemployed people), then the employment rate can be

calculated with the following formula:

µt+1 = µt(1− α) + (1− µt)(1− λ)

Then the invariant distribution, µt = µt+1 = µ∗ is given by µ∗ =
1− λ

α+ 1− λ
.

5.3 A Prelim Example

Setup: If previously unemployed, a worker enters a period with a wage offer w in hand, where w is independently

drawn from the distribution F (w). If the worker refuses the offer, she receives compensation b for the period. If the

offer is accepted, the worker receives w as an input to her strictly increasing utility function u(wt), discounted at a

rate β ∈ (0, 1). If working, there is a probability δ the worker will not be fired in the following period.

Assumption 5.1. Worker utility function is u(w) = w.

Assumption 5.2. Wage offers are bound in the range w ∈ [0,W ].

Assumption 5.3. If fired in period t, the worker receives compensation b and can search for offers next period.

Recursive Formulation: Unemployment U is characterized as

U =b+ β

ˆ W

0

max{V (w), U}dF (w) (1)

=b+ βEJ
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where J(w) = max{V (w), U} and V (w) is the value of employment with offer w in hand, represented as

V (w) = w + β[δV (w) + (1− δ)U ]. (2)

Together, equations (1) and (2) characterize the worker’s problem as a dynamic program.
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Existence and Uniqueness: We need to prove that there exists a unique reservation wage R, and that there is a

unique solution to the dynamic program, described above. First, another assumption.

Assumption 5.4. V(0) < U < V(W).

If this does not hold, then nothing interesting can really be said about the economic environment: the worker

always accepts a job offer if U ≤ V (0) , and the worker never accepts a job offer if U ≥ V (W ).

Claim 5.1. V(W) is strictly increasing.

Proof. Using equation (2),

V ′(w) = 1 + βδV ′(w)⇒ V ′(w) =
1

1− βδ
> 0,

given that δ ∈ (0, 1) and β ∈ (0, 1).

Given that U is a constant value, V is strictly increasing and and the assumption that U ∈ (V (0), V (W )), there

exists a unique R such that V (R) = U , where

V (R) = R+β[δV (R) + (1− δ)U ]

⇒V (R) =
R+ β(1− δ)U

1− βδ
,

such that we can isolate the value of U by expanding the identity V (R) = U :

R+ β(1− δ)U
1− βδ

= U

⇒R+ β(1− δ)U = (1− βδ)U

⇒U [1− βδ − β + βδ] = R

⇒U =
R

1− β
. (3)

Thus, there exists a reservation wage form on J(w) such that

J(w) =

V (w), if w ≥ R.

R
1−β , if w < R.
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We’d like to prove the existence and uniqueness of the functional form of V . To do so, sub equation (1) into

equation (2) to get

V (w) =w + βδV (w) + β(1− δ)(b+ β

ˆ W

0

max{V (w), u}dF (w))

=∆ +
β2(1− δ)

1− βδ

ˆ W

0

max{V (w), U}dF (w),

with ∆ = w+β(1−δ)b
1−βδ . Now we can define the operator T : B(w)→ B(w) on the space of bounded functions by

T (V (w)) = ∆ +
β2(1− δ)

1− βδ

ˆ W

0

max{V (w), U}dF (w). (4)

Claim 5.2. The operator T as defined in equation (4) satisfies Blackwell’s sufficient conditions, and is thus a

contraction with modulus β.

Proof. First, we check for discounting. Given the constant a ∈ R,

T (V (w) + a) =∆ +
β2(1− δ)

1− βδ

ˆ W

0

max{V (w) + a, U}dF (w)

≤∆ +
β2(1− δ)

1− βδ

ˆ W

0

max{V (w) + a, U + a}dF (w)

=∆ +
β2(1− δ)

1− βδ

ˆ W

0

max{V (w), U}dF (w) +
β2(1− δ)

1− βδ
a

≤∆ +
β2(1− δ)

1− βδ

ˆ W

0

max{V (w), U}dF (w) + βa

=T (V (w)) + βa.

Hence, the operator T satisfies the discounting property. Now, we check for monotonicity. Let f(w), g(w) ∈ B(w)

such that f(w) ≥ g(w) ∀w ∈ [0,W ]. Then, we observe

T (f(w))− T (g(w)) =
β

1− βδ

[ˆ W

0

max{f(w), U}dF (w)−
ˆ W

0

max{g(w), U}dF (w)

]
=

β

1− βδ

[ˆ W

0

max{f(w)− g(w), 0}dF (w)

]
≥ 0

and this holds because f(w) ≥ g(w) for all possible offers of w. Hence, the operator T satisfies the monotonicity

property, implying that T is a contraction with modulus β.

As a contraction, we know that there exists a unique solution V to the dynamic program with a corresponding

unique reservation wage R.
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R Increasing in b: Now, we are going to use results and properties of the environment to pin down the relationship

between unemployment compensation b and the reservation wage R. Start with the initial formula for U = b+βEJ :

(1− β)U =b− βU + β

ˆ W

0

max{V (w), U}dF (w) (substract by βU)

=b+ β

ˆ W

R

[V (w)− U ]dF (w)

=b+ β

[
(V (w)− U)F (w)

∣∣∣∣W
R

−
ˆ W

R

V ′(w)F (w)dw

]
(int. by parts)

=b+ β

[
V (W )− U −

ˆ R

W

V ′(w)F (w)dw

]
(bc V (R) = U)

=b+

[
W + (β − 1)U

1− βδ
−
ˆ W

R

V ′(w)F (w)dw

]
(V (W ) = W+β(1−δ)U

1−βδ )

=b+

[
V ′(w)[W + (β − 1)U ]−

ˆ W

R

V ′(w)F (w)dw

]
(V ′(w) = 1

1−βδ )

=b+ β

[
V ′(w)(W −R)−

ˆ W

R

V ′(w)F (w)dw

]
(U = R

1−β )

=b+ β

ˆ W

R

V ′(w)[1− F (w)]dw.

Thus, we know the following relationship must hold:

R = b+ φ(R) (5)

where φ(R) = β
´W
R
V ′(w)[1− F (w)]dw and we once again make use of the fact that U = R

1−β . By Leibniz’s rule,

we have

φ′(R) = −V ′(R)[1− F (R)] < 0.

Claim 5.3. R is (weakly) increasing in b.

Proof. Suppose not. Re-organize (5) as b = R − φ(R). If b increases, then it must be that R − φ(R) is strictly

decreasing. This contradicts the relationship of equation (5); hence, it must be that R is weakly increasing in b.
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6 Recursive Competitive Equilibrium

When discussing equilibrium concepts for the neoclassical growth model in sections 2 and 4, we focused on two

distinct methods that turned out to be equivalent under the right conditions. In particular, we looked at the sequence

problem, whereby the time 0 agent chooses a sequence of allocations, given price information. We also looked at

the functional equation, whereby the the infinite dimensionality of the sequence problem was reduced to a two

period model of sorts, which was embodied in the Bellman equation representation. It is towards this latter solution

concept that recursive competitive equilibrium (RCE) is related to. Recursion refers to the repeated application of

a rule or procedure, and that is exactly what is accomplished here. In particular, for any given period, we define the

state of the economy by a set of objects which completely characterize all relevant information for making decisions.

Using the agent’s value and policy functions, decisions can optimally be made with respect to current and future

utility, one period at a time. In addition, laws of motion for relevant variables track and determine the changes in

the aggregate state variables. This is recursive in nature because the value and policy functions are time invariant

and simply take current states as their inputs. This discussion is adapted from Professor Chari’s lectures. For

additional reference—and a slightly different treatment—you can refer to Ljunqgvist and Sargent Chapters 7,8 and

12.

6.1 Complete Markets

The rest of this section has been replaced with your notes from Chari’s class this year. I edited it

for a few typos, comments, etc.

Consider a stochastic Arrow-Debreu problem for the household:

max

∞∑
t=0

∑
st

µt(s
t)u(ct(s

t), lt(s
t)) (AD)

s.t.

∞∑
t=0

∑
st

pt(s
t)(ct(s

t) + kt+1(st)− (1− δ)kt(st−1)) ≤
∞∑
t=0

∑
st

pt(s
t)(wt(s

t)lt(s
t) + rt(s

t)kt(s
t−1))

s.t. non-negativity constraints

From a mechanical standpoint, all the activity in this economy occurs at date 0: the consumer faces a maximization

problem with a single lifetime budget constraint. Essentially, households take stock of future states of the world

and make decisions about future consumption, labor and investment in the initial time period. This representation

does not capture the normal way in which we imagine interaction in an economy; thus, we consider the sequential

market problem and derive an equivalence between the two. The sequential markets problem is stated with a

period-by-period budget constraint

max

∞∑
t=0

∑
st

µt(s
t)u(ct(s

t), lt(s
t)) (SMP)

s.t. ct(s
t) + kt+1(st)− (1− δ)kt(st−1) ≤ wt(st)lt(st) + rt(s

t)kt(s
t−1) ∀t,∀st

s.t. K̄ ≥ kt+1(st) ≥ 0 ∀t,∀st

where we seek to find the conditions such that the two representations are the same.
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Definition 6.1. A Sequential Markets equilibrium is an allocation {ct(st), lt(st), kt+1(st)} and price system {rt(st), wt(st)}

such that

i. Households solve the SMP

ii. Firms maximize; that is,

a. A(st)Fk(kt(s
t−1), lt(s

t)) = rt(s
t)

b. A(st)Fl(kt(s
t−1), lt(s

t)) = wt(s
t)

iii. And markets clear.

6.1.1 A Simplified Example

To help motivate and prove the equivalence between the Arrow-Debreu setup and the Sequential Markets represen-

tation, we will consider a simple example. Let the example economy be deterministic and have an infinite horizon

with a finite number of types of agents. Let there be I types and assume that there is an equal mass of each type.

Each agent is endowed with eit for each period t which implies resource feasibility∑
i

cit =
∑
i

eit (1)

Thus, an allocation consists of choosing a consumption sequence {{cit}t}i in solving the household problem

max

∞∑
t=0

ui(c
i
t) (2)

s.t.
∑
t

ptc
i
t ≤

∑
t

pte
i
t

Definition 6.2. An Arrow-Debreu equilibrium is defined as a consumption allocation {{cit}t}i and a price system

{pt} such that

1. Households solve (2), and

2. Resource feasibility (1) is satisfied.

Now, consider the period-by-period counterpart to problem (2) along with a new price qt:

max

∞∑
t=0

ui(c
i
t) (3)

s.t. cit + qta
i
t+1 ≤ eit + ait ∀t

where qt is the period t price of a one-period, discount bond and ait+1 is a bond that pays 1 unit of consumption

to agent i in period t + 1, which was purchased in period t.19 At this point, the problem is not well-defined.

In particular, the agent has incentives to boost consumption by continually raising his debt and doing so to an

arbitrarily large limit. Thus, to keep the problem bounded, we include a No-Ponzi condition

ait+1 ≥ −Ā with Ā ∈ R+ (4)

19If the return on such assets is 1 and the price paid is qt, the gross interest rate Rt can be computed as 1/qt.
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which places an ad hoc lower bound on the level of debt the household is allowed to accrue. In a more realistic

setting, we could replace condition (4) with a natural debt limit which derives the bound Ā as the maximal level of

debt such that the consumer still could feasibly repay it over time.

Theorem 6.1. (AD → SM) In the Arrow-Debreu economy, assume prices satisfy the boundedness condition∑∞
t=0 pt < ∞. Then, there exists a sequence of assets {ait+1}, prices {qt} and some bound Ā such that solution to

the Arrow-Debreu problem is also the solution to the Sequential Markets problem.

This theorem states that the sequences of consumption in both problems will be identical, which further implies

that the maximized utility value will be the same. Now, for a theorem stating the reverse direction.

Theorem 6.2. (SM → AD) Let there exists a T and an ε > 0 such that

qt ≤
1

1 + ε
∀t ≥ T

and the No-Ponzi conditions holds with strict inequality, then any solution to the Sequential Markets problem is a

solution to the Arrow-Debreu problem.

To understand the equivalence, consider the first-order condition of the AD problem

[cit] : βtu′i(c
i
t) = λpt (5)

where λ is the multiplier on the time-zero budget constraint. Alternatively, for the sequential markets, consider the

first-order conditions

[cit] : βtu′i(c
i
t) = µt (6)

[ait+1] : qtµt = µt+1 (7)

Combine equations (2) and (3) to get

qt = β
u′i(t+ 1)

u′i(t)

and combine this result with (1) to arrive at the expression

qt =
pt+1

pt
(8)

which is an intuitive result. Price pt represents the numeraire price of a unit of consumption in period t. When in

period t, what price are you willing to pay for a unit of consumption in period t + 1? You will pay pt+1/pt which

is also the period-to-period price qt.
20

20The Arrow-Debreu {pt} prices are relative prices; thus, we can set the price p0 = 0 as a common normalization. In addition, we

can represent the relationship (8) as

p0 = 1

p1 = q0

p2 = q0q1

...

which guarantees that
∑∞
t=0 pt <∞ is finite if and only if

∏∞
t=0 qt <∞.
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Next, how do we recover the assets {ait+1} for the model, given that we have pinned down the prices {qt}? This

is accomplished by summing forward the period budget constraint:

lim
T→∞

pT+1aT+1 + lim
T→∞

T∑
s=t

ps(c
i
s − eis) = pta

i
t

⇒ait =

∞∑
s=t

ps
pt

(cis − eis) (9)

where the first term of the first line is equal to zero as long as assets are bounded and the pT goes to zero in the

limit. Consider equation (5). Divide by the time 0 condition with p0 = 0 to get

pt = βt
u′i(c

i
t)

u′i(c
i
0)

Given a discount factor β < 1 and a strictly concave utility function, interior solutions are guaranteed and the RHS

should converge to zero in the limit.

6.2 Recursive Equilibria in the Neoclassical Growth Model

Now, let’s examine some of the implications for the growth model

max

∞∑
t=0

∑
st

µt(s
t)u(ct(s

t), lt(s
t)) (10)

s.t.

∞∑
t=0

∑
st

pt(s
t)(ct(s

t) + kt+1(st)− (1− δ)kt(st−1)) ≤
∞∑
t=0

∑
st

pt(s
t)(wt(s

t)lt(s
t) + rt(s

t)kt(s
t−1))

s.t. K̄ ≥ kt+1(st) ≥ 0

where we assume that the stochastic innovations {st} come from a finite set and follow a Markov process. We can

now recast the problem in (6) as the functional equation

V (k,K, s) = max {u(c, l) + β
∑
s′

π(s′|s)v(k′,K ′, s′)} (FE)

s.t. c+ k′ − (1− δ)k ≤ w(K, s)l + r(K, s)k

s.t. K ′ = G(K, s)

In this framework, K denotes the aggregate stock of capital in the economy whereas k represents the households

individual holding of the capital stock. Why is it necessary to keep track of the aggregate capital stock? The answer

is two-fold:

1. We need prices to be determined competitively in the economy. This implies that no particular household’s

activity can influence the price level. You can think of the FE as a household’s problem in which that household

is just one of infinitely many on the unit interval. As such, the household chooses quantities taking prices and

aggregates as given.

2. In order to solve this problem, the household needs to be able to forecast future prices, which depend upon
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the decisions of everyone in the economy. This leads to an equilibrium price determination

w(K, s) =A(s)FL(K,L)

r(K, s) =A(s)FK(K,L)

given the production function Y = AF (K,L).

In addition, notice that the FE problem is characterized by a law of motion G for the aggregate capital stock which

households know and take as given. In solving the FE, we define the solutions as policy functions c(k,K, s), l(k,K, s)

and g(k,K, s) for consumption, labor and next-period capital, respectively. Let the space of feasible capital be a

constant set X and the random shocks come from the sigma-algebra Ω with a corresponding probability space.

Definition 6.3. A Recursive competitive equilibrium is defined by a value function v : X × X × Ω → R, policy

functions {c, l, g} of the same domain as v and prices {w(K, s), r(K, s)} such that

1. v attains the maximum of the FE problem, given G(·),

2. the policy functions solve the FE problem,

3. Firms maximize profits:

w(K, s) =A(s)FL(K, l(K,K, s))

r(K, s) =A(s)FK(K, l(K,K, s))

4. g(K,K,s) = G(K,s)

In processing this definition, take special notice of the consistency restrictions imposed on the policy functions,

where they take aggregate capital as an input for their household level k in parts (3) and (4). Thus, while the

household takes the aggregate as given, when in equilibrium and if endowed with the total quantity of capital, the

household will choose the same levels of labor and capital that coincide with equilibrium prices and the aggregate

law of motion.
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7 Incomplete Markets and Heterogeneous Agent Models

7.1 The General Model

In this section, we will consider economies in which there exists a continuum of agents which are ex ante identical,

but due to stochastic shocks and limitations in the asset/insurance markets, have ex post heterogenuous asset

holdings. In a complete markets setting, whether in an Arrow-Debreu or Sequential Markets settings, agents are

able to trade and hedge against various idiosyncratic shocks. For example, an agent can buy contingent claims on

consumption next period, which depend upon whether or not a high or low endowment shock occurs. To do so,

the agent must pay some price today (i.e. must pay some kind of premium). When borrowing is limited, as is the

case with incomplete markets, agents must self-insure: they are left with stock-piling quantities of some asset. As

one risk-averse person may expect, when times are good (shocks are positive), agents choose to accumulate a larger

rainy day fund of assets, and when times are bad (shocks are negative), they are forced to consume their stockpile

of assets in an attempt to smooth consumption over time.

In this model, the environment is characterized by an infinitely-lived unit measure of households with preference21

E

∞∑
t=0

βtu(ct). (1)

We further assume that this is a simple endowment economy, where the agent receives a stochastic endowment

yt ∈ Y every period. We will consider this distribution of assets to be finite; thus, we further assume that the

probability is determined by the transition matrix π(y′|y). In addition, a key and essential assumption that we make

is no aggregate uncertainty. Thus, while individuals face idiosyncratic shocks that are not completely insurable,

the economy has the same level of endowment in each period. For motivation and justification of this assumption,

we can appeal to a law of large numbers result here, since there exists an infinity of agents on the unit interval.

Let Π(y) be the unconditional stationary distribution of y and assue that Π(y) also represents the fraction

of households with endowment y. Therefore, the interpretation is twofold: i) π(y) provides the unconditional

probability of receiving endowment y and ii) the fraction of the households on the unit interval that receive y is

Π(y). As mentioned before, the aggregate endowment is constant at some value y. Households are faced with the

constraints

a′ + c = y + (1 + r)a, and (2)

a′ ≥ −b, (3)

where (2) is a standard budget constraint and (3) is a borrowing constraint. Equation (2) states that today’s

income (from both the stochastic endowment and the return on the agent’s asset stock) must be divided between

current consumption and next-period assets. Equation (3) states that the consumer may not choose assets below

some debt limit −b. Thus, if an agent experiences a particular bad streak of endowment shocks and has a low current-

period level of assets, it may be preferable to choose a large negative level of assets to help smooth consumption.

The debt limit −b may get in the way of allowing the agent to do so.22

21This section is in large part taken from the notes by Lutz Hendricks.
22More on natural debt limit and specifying this particular value.
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Thus, choices depend upon the state vector (a, y), the rate of return on assets r and this decision problem may

be formulated with the Bellman equation as

v(a, y) = max
c,a′

u(c) + β
∑
y′

π(y′|y)v(a′, y′) (4)

subject to the borrowing constraint and the debt limit constraint. Subbing the budget constraint into the utility

function and choosing a lagrange multiplier µ for the debt limit we can form the lagrangian

L = u(y + (1 + r)a− a′) + β
∑
y′

π(y′|y)v(a′, y′) + µ(a′ + b),

which yields the following first-order conditions

u′(c) =β
∑

π(y′|y)
∂v(a′, y′)

∂a′
+ µ (5)

∂v

∂a
=u′(c)(1 + r) (6)

µ(a′ + b) =0, µ ≥ 0, a′ + b ≥ 0. (7)

Equation (5) comes from differentiating with respect to the choice of next-period assets, while equation (6) is the

envelope condition and equation (7) is a complementary slackness condition on choosing assets above the debt limit.

If the debt limit is binding for consumers, then µ > 0 and u′(c) > E[β(1 + r)u′(c′)]. What does this mean? This

shows that if the debt limit is a barrier to agents properly smoothing their consumption over time, then it reduces

welfare to a level underneath that which would be attainable with complete markets. The solution concept for

the household problem is the value function and policy functions for consumption and next-period asset holdings.

Further, to characterize equilibrium, we must define a joint distribution of assets and endowments in the economy.

We will use Φ(a0, y0) = Prob{a ≤ a0, y ≤ y0}.

Definition 7.1. A stationary equilibrium is a value function v(a, y) and the policy functions c(a, y) and a′(a, y) for

households, a price function r(Φ) and a joint distribution of assets/endowments Φ(a, y) such that

1. households optimize with respect to their constraints,

2. markets clear, and

3. Φ is a time-invariant distribution.

We’ve already defined the households problem. For market clearing, we must observe

ˆ ˆ
c(a, y)Φ(da, dy) =

ˆ
yΠ(dy) = y (8)

ˆ ˆ
a′(a, y)Φ(da, dy) = 0 (9)

for each period. Let’s look at equation (8). The RHS shows that expected value of aggregate endowments for

any period. Given our law of large numbers result, we have assumed that his quantity is fixed at y. The LHS shows

aggregate consumption in the economy, summed over all possible levels of this-period asset holdings and all possible

shocks. c(a, y) is a deterministic function and the integration just sums up these policy functions for every possible
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combination of asset holdings and shock in the economy. Lastly, equation (9) assumes that the net aggregate level

of assets is zero.23

Lastly, we turn to the time invariance of the joint distribution Φ. Technically, this is allowed to vary from day to

day (i.e. from Φ(a, y) to Φ′(a′, y′)). How? It is determined by the household policy functions and the past random

shocks. In particular, since a′ is determined in the period before, the policy functions a′(a, y) will play a role in

determining a law of motion for Φ. The equilibrium is stationary when Φ′ = Φ. Let’s define a transition function

Q((a, y), (A, Y )). It’s interpretation is the probability of ending up in state (a′, y′) ∈ (A, Y ) tomorrow, given that you

find yourself in state (a, y), today. By assumption, this probability is also equal to the fraction of the population

that will end up in (A, Y ) tomorrow. Specifically, we write

Q((a, y), (A, Y )) =


∑
y′∈Y π(y′|y), if a′(a, y) ∈ A

0, Otherwise ,

.

First, what is the probability of ending up in the set of shocks Y ? It’s the sum of the probabilities for ending

up with y′ ∈ Y , given the state of y today. In addition, what’s the probability of ending up in the future shock set

Y and with asset levels a′ ∈ A? It’s the same sum of probabilities, excluding the ones where the policy function

a′(a, y) /∈ A. a′(a, y) is deterministic and chosen by the agent in the previous period, so obviously we do not want

to count the states that don’t have the policy functions in the set A. Now, we may formalize the law of motion for

the joint distribution function as

Φ′(A, Y ) =

ˆ ˆ
Q((a, y), (A, Y ))Φ(da, dy). (10)

In (10), we define the joint distribution of assets and shocks tomorrow (RHS) as simply the probability of ending

up in any set (A, Y ) tomorrow, summed over all levels of a and y today. Stationarity is simply the case when

Φ′(A, Y ) = Φ(A, Y ) ∀(A, Y ).24

23For every liability, there is a matching asset of the same value. Thus, in equilibrium the sum of these values must be zero.
24IF there does not exist an invariant joint distribution, then we may also define a non-stationary equilibrium. We must redefine the

Bellman equation and asset policy function as v(a, y,Φ) and a′(a, y). Further, the returns on assets are now a function of the aggregates

in the economy, which fluctuate; so, r(Φ). Lastly, the law of motion for the joint distribution is now some potentially non-linear function

of the previous state: Φ′ = H(Φ). Our equilibrium definition is the same, but now with the stationarity/time-invarince condition

dropped.
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7.2 An Application: The Huggett Model

This section presents the paper by Mark Hugget (1993) from the Journal of Economic Dynamics and Control, titled

The risk-free rate in heterogeneous-agent Incomplete-insurance Economies. The prime motivation for the paper was

the existence of risk-free rates and equity premiums that were too low and high, respectively, given the calibration

of representative agent model economies. In this model, agents face uninsurable idiosyncratic endowment shocks

and they smooth their consumption through holding a risk-free asset.

Consider an exchange economy with a continuum of agents with total mass equal to one. Each period, agents

will receive an endowment of a perishable consumption good. For simplicity, the endowment is either high (eh) or

low (el). The set of endowment is denoted E = {el, eh}. We will assume that agent’s endowment follow a Markov

process with a stationary transition probability π(e′|e) > 0, which is independent of all other agents’ current and

past endowments. Agent’s have identical preferences, given by

E[

∞∑
t=0

βt
c1−σt

1− σ
], (1)

where we assume σ > 1. Agents are allowed to hold some credit balance of a units, entitling an agent to a

units of consumption in the respective period. If the agent wishes to receive a′ units of the consumption good next

period, he must pay qa′ good this period where q denotes the price of next-period balances. We also assume that

there exists a credit limit a < 0 that agents can never go below. The agents budget constraint is

c+ qa′ ≤ a+ e with c ≥ 0 and a′ ≥ a (2)

So, every period, the agent observes the sum of his endowment + the assets he received that period. From there,

he chooses how to divide this revenue between current consumption and buying next-period assets. Assets can also

be negative: thus, the consumer can consume in excess of his income a+ e by choosing negative next-period assets,

meaning he will have to pay back those liabilities in the following period.

Now, we’d like to formalize the agent’s problem in terms of a Bellman equation. An agent’s position in time is

denoted by a state vector x ∈ X where x = (a, e). Thus, all that an agent is required to know to make optimal

decisions is his current level of assets and the current-period shock to his endowment stream. Thus, the individual

state space is X = A× E where A = [a,∞] and E is denoted as before, with eh > el. Thus, a functional equation

is defined by

v(x; q) = max
(c,a′)∈Γ(x,q)

u(c) + β
∑
e′

π(e′|e)v(a′, e′; q) (3)

where the correspondence is

Γ(x; q) = {(c, a′) : c+ qa′ ≤ a+ e; c ≥ 0; a′ ≥ a}. (4)

Thus, given the state of the economy and the consumers endowment and asset holdings, he must choose con-

sumption and next-period assets in a way that maximizes expected lifetime utility. If the function v is the optimal

value function, then we can define policy functions c : X × R++ → R+ and a : X × R++ → A given that they are
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measurable, feasible and satisfy

v(x; q) = u(c(x; q)) + β
∑
e′

π(e′|e)v(a(x; q), e′; q).

Warning: some abuse of notation is upcoming.25 What do we know about all of the agents? We know that they

are not the same. Thus, we must develop a probability measure, defined on the subsets of the individual state space.

Let Ψ be such a measure on (X,βX) where X = [a, a]×E and βX the Borel σ−algebra. Thus, Ψ(B) indicates the

mass of agents whose individual state vectors lie in B. Intuitively, pick an interval of assets holdings and the high

or low endowment level (or both), and Ψ will tell you what fraction of the population (of measure one) will be with

those traits.26 For this model, we will assume that the probability measure Ψ and asset prices q are unchanging in

time. Thus, we utilize a stationary probability measure and are interested in stationary equilibria.27

Definition 7.2. A stationary equilibrium for this economy is {v, c(x), a(x), q,Ψ} where v is a solution to the

functional equation and

i. c(x) and a(x) are optimal policy functions solving the value function, given q,

ii. Markets clear:

1.
´
c(a, e)Ψ(dx) =

´
eΨ(dx)

2.
´
a(x)Ψ(dx) = 0

iii. Ψ is a stationary probability measure for all B ∈ βX .

So, equilibrium requires that the agents optimize utility with respect to their choices over consumption and

next-period assets. Further, aggregate consumption must equal the aggregate endowment in any given period and

any given state, and the net sum of all assets must be equal to zero, as well.

Before, we compute the equilibrium, let us define a mapping T on the space C(X) of bounded, continuous

real-valued functions on the individual state space X. We write

25We have described an individuals state space as X = A × E = [a,∞)] × {el, eh}. These are the possible values that may occur

for an individual. In what follows, we will need to construct a similar type of measure for the economy, denoted S = [a, a] × {el, eh}

which is the interval of all possible asset values along with all possible levels of the endowment shock. From this set, we can generate

its Borel σ−algebra. This will be used in calculating aggregate probability measures for the economy. While this is done in the paper

and is technically correct, I am excluding the new notation and simply using the individual state space X. Thus, when x appears as an

element in X, you can interpret it with the same meaning of the S state space notation.
26Remember: by assumption, this is the unconditional probability of having assets and an endowment shock in the state B and it is

the fraction of the population that is also in that state!
27Keeping with the notation from the actual paper, we define a transition function Q : X × βX → [0, 1]. Q(x,B) = Q((a, e), B =

(a′, e′)) is the probability that an individual with state x will have an individual state vector lying B next period, just as before but

with slightly different notation this time. Then Ψ is said to be stationary given that

Ψ(B) =

ˆ
P (x,B)Ψ(dx) ∀B ∈ βS .

The stationarity comes from the fact that the LHS is not Ψ′(B) but instead the same joint distribution as today’s Ψ(B). Further,

this holds for all possible joint occurrences of assets a′ and endowments e′ (i.e. for all possile B).
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(Tv)(x; q) = max
(c,a′)∈Γ

u(c) + β
∑
e′

π(e′|e)v(a′, e′; q), (5)

where we define iterations of this operator by Tn suh that T 1v = Tv and T 2v = T (T (v)) and so on.

Theorem 7.1. For q > 0 and a + el > qa, there exists a unique solution v(x;q) ∈ C(X) to (3) and the mappings

Tnv0 converge uniformly to v as n → ∞ for any initical guess v0 ∈ C(X). Further, v(x) is strictly increasing,

strictly concave and continuously differentiable in a. Furthermore, there exist continuous optimal decision rules

c(x; q) and a(x; q) such that a(x, ; q) is strictly increasing in a for (x; q) such that a(x; q) > a (and nondecreasing

for a(x; q) ≥ a).

Proof. First, we wish to show that the operator T is a mapping from the space C(X) → C(X). Due to the Inada

conditions on consumption, c∗ will always occur in the interior of the budget constraint (i.e. c∗ > 0 for all states x).

Further, the objective c(1−σ)

1−σ is bounded above for all paramter values σ > 1 and is bounded below for non-negative

inputs c. Thus, there exists some M such that |v(x; q)| < M for all x ∈ X. Further, the objective function u(c) is

continuous for c > 0; therefore, (Tv)(c) : C(X)→ C(X).

Further, the operator T is a contraction on the space of bounded, continuous function. Specify the sup norm

metric. Under Blackwell’s sufficient conditions, we can prove monotonicity and discounting. That is.

i. For any v̂, ṽ ∈ C(X) where v̂(x) ≥ ṽ(x)∀x ∈ X, (T v̂)(x) = maxu(x) + βv̂(x) ≥ maxu(x) + βṽ(x) = (T ṽ)(x).

ii. [T (v + a)](x) = maxu(x) + βv(x) + βa = (Tv)(x) + βa .

Thus, T is a contraction with a fixed point v∗ ∈ C(X) such that (Tv∗)(x) = v∗. Further, for any initial guess

v0 ∈ C(X), the sequence Tnv0 will uniformly converge to the fixed point.

Next, note that the objective function u(c) is continuous in its argument and that the correspondence Γ is

continuous, nonempty and compact. Thus, (Tv)(x) is a continuous function. Through strictly increasing and strictly

concave properties of the objective function, the value function is strictly increasing and strictly concave. Further,

for any a, holding a′ constant, consumption is nondecreasing in a. Beneviste and Schenkman for continuously and

differentiable value function.

The next theorem states conditions under which, for given q, there exists a unique stationary probability measure

Ψ and it gives a method for computing excess demand in the credit market. Let us now define a mapping W :

M(X)→M(X), induced by a transition function Q where M(X) is the space of probability measures on (X,βX).

This is given by

(WΨ)(B) =

ˆ
Q(x,B)Ψ(dx) ∀B ∈ βX .

We have defined the operator W but this is just another way of stating the general law of motion for the joint

distribution as Ψ′(B) =
´
Q(x,B)Ψ(dx) like we did in the introduction to this section.
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Theorem 7.2. If the conditions of the first theorem hold, β < q and π(eh|eh) ≥ π(eh|el), then there exists a unique

stationary probability measure Ψ on (X,βX) and, for any Ψ0 ∈M(X),WnΨ0 weakly converges to Ψ.

This theorem states conditions under which the probability distribution is stationary (end hence the equilibrium

is stationary) and that the probability distribution is unique.

Proof. Here, we utilize Theorem 12.12 from SLP, which states that, given the set X, if transition function Q is

monotone, satisfies the Feller property and ∃c ∈ X, ε > 0 and N ≥ such that PN (a, [c, a]) ≥ ε and PN (a, [a, c]) ≥ ε,

then P has a unique invariant probability measure Ψ such that WnΨ0 → Ψ.

First, we may assume that X is an ergodic set, which implies that ∀n and ∀a, b, PN (a, b) > 0. Thus, this easily

satisfies the last condition for non-negative probabilities.

To prove P is monotone, we must show that for any increasing function (Tf)(x) =
´
f(x′)P (x, dx′) is an

increasing function. Thus, we must show that TF is increasing in initial state assets a and initial state assets e.

Note that we have assumed π(eh|eh) ≥ π(eh|el). This implies

ˆ
f(x′)P ((a, eh), (da′, de′h) ≥

ˆ
f(x′)P ((a, el), (da

′, de′h),

holding a constant. Thus, the operator is increasing in positive endowment shocks. Next, note for ã > a,

ˆ
f(x′)P ((ã, e), (da′, de′) ≥

ˆ
f(x′)P ((a, e), (da′, de′),

holding endowments constant, because the policy functions a(a, e) are strictly increasing in initial assets a. Thus,

we have shown that the operator (Tf) is increasing in its arguments, which implies that P is in fact monotone.

Lastly, we must prove the Feller property which requires that (Tf)(x) =
´
f(x′)P (x, dx′) is a continuous function

for any bounded and continuous function f . Let us take any sequence of initial states {xn} in the state space X

where xn → x ∈ X. Thus, we have (Tf)(xn) =
´
f(x′)P (xn, dx

′). Apply limits

lim(Tf)(xn) =lim

ˆ
f(x′)P (xn, dx

′)

=

ˆ
f(x′)limp(x′|xn)dλ

=

ˆ
f(x′)P (x, dx′) (Lebesgue Dominated Convergence Theorem)

=(Tf)(x)

where the second line re-expresses the transition function as a conditional distribution. Thus, the operator

(Tf)(x) is a continuous function, satisfying the Feller property. Given that these conditions are satisfied, Ψn

uniquely converges to an invariant joint distribution Ψ.

If this distribution weakly converges then we can expect the sequence of asset holdings to converge; that is, we

expect to observe

ˆ
a(x; q)Ψnd(x)→

ˆ
a(x; q)Ψ(dx),
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which is expected to equal zero in equilibrium.

To calibrate this model to the real economy, we need to find parameter estimates for the set (eh, el, σ, β, a, π(eh|eh), π(eh|el)

within the context of the proper period length. We will assume the low and high endowments as income when un-

employed and employed, respectively. Further, we will consider a model in which six periods is interpreted as

one calendar year. Reference the paper for more details as to the data collection and calibration, but we will use

eh = 1, el = 0.1, π(eh|eh) = 0.925, π(eh|el) = 0.5, β = 0.99322, σ = 1.5 and range of possible credit limit levels

a ∈ {−2,−4,−6,−8}. Computation for equilibria proceeds as follows

1. Given price q, compute a(x; q), given Theorem 1.

2. Given a(x; q), iterate on Ψn+1(B) =
´
s
P (x,B)dΨn from some arbitrary Ψ0 ∈ M(S). When the sequence has

approximately converged, use probability measure to compute
´
S
a(x; q)dΨ.

3. Update q and repeat steps 1 and 2 until market clearing for the asset market is approximately observed.

What are the results from this paper after computing the equilibrium, given the parameter estimates? 1) The

risk-free rate decreases as the credit limit increases. That is, as the credit limit is increased, the interest rate must be

lowered to persuade agents to not overaccumulate credit balances so that the credit market can clear. 2) Higher risk

aversion reduces the risk-free rate for all credit limits examined. We have found that with no aggregate uncertainty

but with idiosyncratic shocks that are not perfectly insurable, the estimated risk-free rate is lower than a standard

representative agent model with the same aggregate fluctuations. These results are closer to that observed in reality.

7.3 Arrow’s Theorem

Consider an economy with i = 1, 2, . . . , I agents that have preferences over a single good given by a utility function,

ui(.) and discount utility utility with β.

In each period t there is a realisation of a stochastic event st ∈ S. Let the history of events until time t be denoted

st = [s0, s1, . . . , st]. The unconditional probability of observing a particular sequence of events, st is given by a

probability measure πt(s
t). Assume that π0(s0) = 1.

Agent i owns a stochastic endowment of the good yt(s
t) that depend on the history st.

Denote by q0
t (st) as the price of one unit of consumption where, the superscript 0 refers to the date when trades

occur, while the subscript t refers to the date when deliveries are made.

Definition 7.3. An Arrow-Debreu competitive equilibrium is a sequence of prices {q0
t (st)}∞t=0 and allocations

{(cit(st))Ii=1}∞t=0 for every history st such that:
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1. Given prices {q0
t (st)}∞t=0, consumer i = 1, 2, . . . , I chooses {(cit(st))}∞t=0 to solve:

max
{cit(st)}∞t=0

∞∑
t=0

βtui(cit(s
t))πt(s

t)

subject to

∞∑
t=0

∑
st

q0
t (st)cit(s

t) ≤
∞∑
t=0

∑
st

q0
t (st)yit(s

t)

cit(s
t) ≥ 0 ∀t, st

2. Markets clear:

I∑
i=1

cit(s
t) =

I∑
i=1

yit(s
t) ∀t, st

Denote by Q̃t(st+1|st) (the pricing kernel) as the price of one unit of time t+ 1 consumption, contingent on the

realization st+1 at t+ 1, when the history at t is st.

Definition 7.4. A sequential markets equilibrium is a sequence of pricing kernel Q̃t(st+1|st), and allocations

{(c̃it(st), ˜ait+1(st+1))Ii=1}∞t=0 such that:

1. Given the pricing kernel, {Q̃t(st+1|st)}∞t=0, initial distribution of wealth {ãi0(s0)}Ii=1 and, the natural debt

limit, {Ait+1(st+1)}∞t=0, consumers i = 1, 2, . . . , I choose

{c̃it(st), ãit+1(st+1)}∞t=0 to solve:

max
{c̃it(st),ãit+1(st+1)}∞t=0

∞∑
t=0

βtui(cit(s
t))πt(s

t)

subject to

cit(s
t) +

∑
st+1

ãit+1(st+1, s
t)Q̃t(st+1|st) ≤ yit(st) + ãit(s

t) ∀t, st

cit(s
t) ≥ 0 ∀t, st

ãit+1(st+1) ≥ −Ait+1(st+1) ∀t, st

2. Markets clear:

I∑
i=1

cit(s
t) =

I∑
i=1

yit(s
t) ∀t ≥ 0, st

I∑
i=1

ãit+1(st+1) = 0 ∀t ≥ 0, st+1

Theorem 7.3. Let {{cit(st)}Ii=1}∞t=0, {q0
t (st)}∞t=0 constitute an Arrow-Debreu Equilibrium as defined in part a),

then there exists an initial distribution of wealth {ãi0(s0)}Ii=1, sequence of natural debt limits and a corresponding

sequential markets equilibrium as defined in part b), with allocations {{c̃it(st), ãit+1(st+1)}Ii=1}∞t=0 and pricing kernel

{Q̃t(st+1|st)}∞t=0 such that:

cit(s
t) = c̃it(s

t) ∀i, t, st
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Proof.

By making an appropriate guess of the form of pricing kernel, it is easy to show that a competitive equilibrium

allocation of the Arrow-Debreu model is also an allocation for a competitive equilibrium under sequential markets

with a particular distribution of initial wealth. Take an initial guess of Q̃t(st+1|st) as follows:

q0
t+1(st+1) = Q̃t(st+1|st)q0

t (st)

This implies that Q̃t(st+1|st) = qtt+1(st+1) since, qtt+1(st+1) =
q0t+1(st+1)

q0t (st)
.

The one-period Euler equation for the Arrow-Debreu economy is given by:

βu′i(cit+1(st+1))πt+1(st+1|st)
u′i(cit(s

t))
=
q0
t+1(st+1)

q0
t (st)

The one-period Euler equation for the sequential markets economy is given by:

βu′i(c̃it+1(st+1))πt+1(st+1|st)
u′i(c̃it(s

t))
= Q̃t(st+1|st)

If our guess of the pricing kernel is correct, then the CE allocations under the Arrow-Debreu equilibrium are

supported by the sequential market structure as shown above. The only thing remaining for us to choose is

the initial distribution of wealth {ãi0(s0)} so that sequential market equilibrium duplicates the Arrow-Debreu

competitive equilibrium allocation.

Claim: The initial distribution of wealth {ãi0(s0)}Ii=1 has to be zero for i = 1, 2, . . . , I

Proof: For convenience, we first define the household’s wealth, in terms of the date t, history st of the consumption

good as:

Υit(s
t) =

∞∑
τ=t

∑
sτ |st

qtτ (st)[cit(s
t)− yit(st)]

The proof is once again by guessing that the household i chooses a portfolio given by ãit+1(st+1, s
t) = Υit+1(st+1).

Thus, the value of the portfolio expressed in terms of the date t, history st of the consumption good is given by:∑
st+1

ãit+1(st+1, s
t)Q̃t(st+1, s

t) =
∑

st+1|st
Υit+1(st+1)qtt+1(st+1)

Substituting in the expression for Υit+1(st+1), we get:

∑
st+1

ãit+1(st+1, s
t)Q̃t(st+1, s

t) =

∞∑
τ=t+1

∑
sτ |st

qtτ (sτ )[cit(s
t)− yit(st)]

This will help us to show that c̃it(s
t) = cit(s

t). In the initial period, ãi0(s0) = 0 for all i, thus, substituting the

above equation in the sequential markets budget constraint gives:

c̃i0(s0) +

∞∑
t=1

∑
st

q0
t (st)[cit(s

t)− yit(st)] = yi0(s0) + 0

The Arrow-Debreu budget constraint holds with equality which then implies that ci0(s0) = c̃i0(s0) as there is no

initial distribution of wealth, the households must rely on its own endowment stream to finance consumption.
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Moving to time t>0 and histories st, replace ãit(s
t) in the sequential budget constraint in terms of the net claims

Υit(s
t), we can re-write the value of the asset portfolio as:∑

st+1

ãit+1(st+1, s
t)Q̃t(st+1|st) = Υit(s

t)− [cit(s
t)− yit(st)]

Now, given that the period-by-period sequential budget constraint holds with equality, this implies that cit(s
t) =

c̃it(s
t) for all i, t, st.

Note that in this case, the household will not increase current consumption by reducing the asset portfolio because

of the natural debt limits. The natural debt limit is the weakest possible debt limit for every time period t and

history st which makes it feasible for the consumer to repay his debt in every possible state and cit(s
t) remains

non-negative. Thus, at any period t, the household will not increase consumption because it would not keep him

on the optimal path from period t+ 1 onwards for all possible histories.
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8 Monetary Economies

In this section, we’d like to present some models of money and address certain properties and concepts within that

environment. In particular, we will focus on topics including the opportunity cost of money, neutrality (and super

neutrality) of money, the Fisher equation, the Friedman rule and models with both determinate and indeterminate

nominal price levels. All models in this section rest upon the underlying shopper-worker assumption as well as the

cash-in-advance (CIA) constraint, which together determine the sequence of actions taken and the frictions faced

by agents in these money models.

8.1 Cash-Credit Model

For this model, it is extremely important to understand the timing of the events that take place from period-to-

period to understand how the economy evolves and the agent makes decisions. Use the graph timeline below to

help understand the sequence of events within a given period.

At

Period t Starts

At = Mt +Bt

SM Opens

{nt, c1t, c2t}

Shop/Work/Cash

{RtBt, ptnt, Tt}

Returns and Pay Credit

At+1

Period t+ 1 Starts

We assume that a household enters each period with nominal assets (or nominal wealth) At and decides how to

split this up between current-period money Mt and bonds Bt where the bond promises to pay Rt dollars in interest

at the end of the period. So, at the very beginning of the period, the household decides over the division

At = Mt +Bt. (1)

In this economy, there are two consumption goods and a nominal price level pt, measuring the dollars per

consumption good in period t (or some other currency index). Note that this price is different than the typical

arrow price we have discussed in non-monetary economies. The two goods are the cash good (c1t) and the credit

good (c2t). for the cash good, we have the cash-in-advance constraint (CIA) that imposes

ptc1t ≤Mt (2)

Thus, you can only consume as much of the cash good as your current money holdings will allow. You can interpret

this commodity as a pay up front commodity. On the other hand, the credit good can be placed on some type of

short-term credit balance to be repaid at the end of the period, or at the very beginning of the following period.28

The household has preferences over the two goods and leisure, given by∑
t

βtu(c1t, c2t, 1− nt) (3)

where the utility function is strictly increasing in leisure (1− nt) and the consumption goods along with the usual

conditions to guarantee an interior solution. Agents wish to optimize (3) with respect to the CIA constraint (2)

28In reality, cash goods can be thought of as checking accounts, as well. Examples of cash goods would be groceries, restaurant meals,

paying for fuel at a gas station, drinks at a bar, etc. On the other hand, credit goods could be objects such as utility services, where

you receive the service and our expected to pay within a month or year’s time.
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and a sequential budget constraint

At+1 + ptc1t + ptc2t = Mt + ptnt + Tt +RtBt (4)

and initial conditions M0 +B0 = A0. Because next-period assets will be split between next-period cash and bonds,

we may equivalently view the budget constraint as

Mt+1 +Bt+1 + ptc1t + ptc2t = Mt + ptnt + Tt +RtBt (4∗)

depending on whichever you find more intuitive or convenient. I find (4) most intuitive, as it says that whatever

is not spent on cash or credit goods (i.e. the period’s net revenues) is simply rolled into next period’s asset holdings

At+1.

So, the consumers current period money holdings, labor returns, lump sum tax revenues and end-of-period return

on bonds act as within-period revenues, divided between next-period asset holdings and current-period consumption

of the cash and credit good. Let’s refer back to the timeline and formally run through the sequence of actions.

The agent enters period t with some quantity of wealth/assets At. The agent immediately goes to the securities

markets and divides the assets into cash and bonds. Next, the agent works (some quantity nt) and buys both c1t

and c2t. This is the shopper-worker dichotomy. The agent’s purchase of c1t is restricted by the CIA and financed

solely through the previously chosen money holdings Mt. Lastly, at the end of the period, the agent receives income

returns from labor services, bond investment and government transfers. He uses this to pay for the credit good,

and pockets the remainder as At+1 for next period.

We further impose a no-ponzi condition
Bt
pt

= bt ≥ −B (5)

for some scalar B � 0, along with a government budget constraint

RtB
s
t + Tt = Bst+1 + (Ms

t+1 −Ms
t ). (GBC)

The LHS can be interpreted as the government expenditures where the government pays its receipts on bonds

and transfers to households while the RHS can be viewed as revenues through debt-financing and money creation,

respectively.29 In addition, throughout these notes, I will use capital letters M and B to denote the nominal

quantity of money and bonds, whereas lower case letters m and b will refer to their real value, after being divided

by the same period price level.

Definition 8.1. A competitive equilibrium is defined by the allocations {(c1t, c2t, lt)}∞t=0, quantities {(Mt, Bt)}∞t=0

and prices {(pt, Rt)}∞t=0 such that i) households maximize (3) subject to constraints (1), (2), (4∗), (5) and the initial

asset conditions and ii) markets clear:

1. c1t + c2t = nt ∀t

2. RtB
s
t + Tt = Bst+1 + (Ms

t+1 −Ms
t ) ∀t

3. Ms
t = Mt ∧ Bst = Bt ∀t.

29Tt > 0 is a lump-sum transfer and Tt < 0 denotes a lump-sum tax.
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We assume that the sum of cash and credit goods is equal to total amount of labor employed by the agent in

each period; thus, there is a 1-to-1 production rate and conversion rate between the two goods. Apply Lagrange

multipliers of λt and µt to the household budget constraint and CIA, respectively. While the agent chooses holdings

of money and bonds for the current period, we will perform the maximization with respect to choices of mt+1 and

ct+1 without a loss of generality.30 This yields the following system of first-order conditions

[c1t] :βtu1t = pt(λt + µt) (6)

[c2t] :βtu2t = λtpt (7)

[nt] :βtunt = λtpt (8)

[Bt] :λt−1 = λtRt (9)

[Mt+1] :λt = λt+1 + µt+1. (10)

Let’s do some simplifying. Plug condition (10) into (6) to get βtu1t = ptλt−1. Then divide this by equation (7)

to obtain

u1t

u2t
=
ptλt−1

λt

=Rt (11)

where the last line comes from employing equation (9). Loosely speaking, condition (11) requires that the marginal

rate of substitution between consumption of the cash good and the credit good is equal to the gross rate of interest

for bonds. Assuming strictly increasing, concavity and Inada conditions on the utility function, as the return on

bonds increases (holding all else constant) the LHS must adjust by decreasing the ratio of consumption between

cash over credit goods. In other words, higher interest rates increase the opportunity cost of holding money balances

(which have lower return).31 Next, divide equation (7) by equation (8) to obtain

u2t

unt
= 1. (12)

Lastly, let’s attain an inter-temporal condition with respect to the cash good. For this, let’s divide the t condition

30Check for yourself that it doesn’t matter whether you maximize with respect to {Mt, Bt} or {Mt+1, Bt+1}.
31You may be wondering where the labor wage is within the budget constraint. In this model, given the production function

nt = c1t + c2t, the wage rate turns out to be wt = 1. To see why this is, consider the firm’s problem:

max
nt

pt[nt − wtnt]

s.t. c1t + c2t ≤ nt.

Taking the first-order derivative, we arrive at the condition:

pt[1− wt] = 0⇒ wt = 1.
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(6) by its t+ 1 counterpart

βtu1t

βt+1u1t+1
=

pt(λt + µt)

pt+1(λt+1 + µt+1)

=
1

Πt+1

λt−1

λt

=
Rt

Πt+1

⇒ u1t

βu1t+1
=

Rt
Πt+1

(13)

Here, we use the formula Πt+1 to measure the inflation (or gross rate of change) in the price level pt+1/pt, from

period t to period t+ 1. Doing the same for the credit good condition, we observe

u2t

βu2t+1
=
Rt+1

Πt+1
(13∗)

Equation (13∗) is a famous term (the Fisher Equation) in disguise. The LHS of the equation is the ratio of marginal

utilities for current and next-period consumption of the cash good, measured in date t present value. Given that

these terms are relatively close to 1 and after some re-arranging, we arrive at

Rt+1 =(
u2t

βu2t+1
)Πt+1

⇒ 1 + rt+1 =(1 + r̂t+1)(1 + πt+1) (14)

where the lower-case variables represent net values from the gross terms. This identity is approximately represented

by rt = r̂t + πt. Generally, this is interpreted as saying that the nominal return on bonds is equal to the sum of

the real return and the inflation of the price level. Bonds are held over the period in expectation of the total return

Rt. The opportunity cost of holding these bonds is the ratio of marginal utility received from consuming the credit

good. Thus, if bonds are to be attractive investments, they must be at least as high as this cost. Further, during

the time of holding bonds, additional money may be created; thus, as money enters the economy, it increases the

price level pt to pt+1. Therefore $3 today does not buy as much tomorrow and the investor must be compensated

for this inflation. In total, the nominal return on a bond must be enough to compensate for the opportunity cost

of consumption plus the decrease in purchasing power from inflation.

8.1.1 Opportunity Cost of Money

Now, let us rearrange the budget constraint to make some observations about the use of money within this model.

First, recall that the Arrow-Debreu price qt represents the price of a unit of consumption at time t, measured in

terms of period 0 consumption. We can express this price as

qt =
1

Rt

pt
pt−1

1

Rt−1

pt−1

pt−2
· ·· = pt

Πt
j=0Rj

,

or more simply as qt = 1
Rt

pt
pt−1

qt−1. What does this expression say? The value of time t consumption measured in

units of the time 0 good is equal to the nominal price level at time t divided by the product of government debt

interest rates, up to time t.
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Now, let us multiply the household budget constraint by qt
pt

to get

qtMt+1

pt
+
qtBt+1

pt
=
qtMt

pt
− qtc1t + qtnt − qtc2t +

qtTt
pt

+
qtRtBt
pt

(14)

Next, add up the household budget constraints from time 0 to time T :

T∑
t=0

qt
pt
Mt+1 +

T∑
t=0

qt
pt
Bt+1 ≤

T∑
t=0

qt
pt
Mt −

T∑
t=0

qt[c1t + c2t − nt] +

T∑
t=0

qt
pt
RtBt +

T∑
t=0

qt
pt
Tt

which can be further compacted to

T−1∑
t=0

[
qt
pt
− qt+1

pt+1
]Mt+1 +

T−1∑
t=0

[
qt
pt
− qt+1

pt+1
Rt+1]Bt+1 +

qT
pT
MT+1 +

qT
pT
BT+1 ≤

q0

p0
M0−

T∑
t=0

qt[c1t+c2t−nt−
Tt
pt

]+
q0

p0
R0B0.

(15)

Next, plug the identity qt+1 = 1
Rt+1

pt+1

pt
qt into the qt+1 term for next-period bonds in equation (15) to get a series

of cancellations, leading to

T−1∑
t=0

[
qt
pt
− qt+1

pt+1
]Mt+1 +

qT
pT
MT+1 +

qT
pT
BT+1 ≤

q0

p0
[M0 +R0B0]−

T∑
t=0

qt[c1t + c2t − nt −
Tt
pt

]. (16)

We now impose a transversality-type assumption:

lim
n→∞

qt+1
Mt+2

pt+1
+ qt+1

Bt+2

pt+1
= 0. (TVC)

Why are we justified in making this assumption? If this were not true, and instead the quantity qt+1[Mt+2

pt+1
+Bt+2

pt+1
] > 0

in the limit. Then, this quantity can be marginally decreased and consumption of goods c1t and c2t can be marginally

increased on the RHS of (16). Given strictly increasing preferences, this would necessarily increase expected lifetime

utility; thus, we impose this condition at the equilibrium. In taking the limit of (16), we observe

∞∑
t=0

[
qt
pt
− qt+1

pt+1
]Mt+1 =

q0

p0
[M0 +R0B0]−

∞∑
t=0

qt[c1t + c2t − nt −
Tt
pt

]

⇒
∞∑
t=0

qt+1

pt+1
[Rt+1 − 1]Mt+1 +

∞∑
t=0

qt[c1t + c2t − nt +
Tt
pt

] =
q0

p0
[M0 +R0B0] (17)

where we normalize the date-0 Arrow-Debreu price to q0 = 1 and we observe inequality because this condition holds

at the equilibrium. Getting to the last line requires Mt+1[ qtpt −
qt+1

pt+1
] = qt+1

pt+1
Mt+1[pt+1

pt

qt
qt+1
−1] = qt+1

pt+1
Mt+1[Rt+1−1]

through playing with the equation for qt. Lastly, a little manipulation and use of the initial conditions, we can

isolate A0 on the right hand side:

q0

p0
[M0 +R0B0] =

q0

p0
M0 +

q0

p0
R0B0 (18)

=
q0

p0
M0 +

q0

p0
R0(A0 −M0)

=− q0

p0
(R0 − 1)M0 +

q0

p0
R0A0

which can be plugged into (17) for the final representation

∞∑
t=0

qt
pt

[Rt − 1]Mt +

∞∑
t=0

qt[c1t + c2t − nt +
Tt
pt

] =
q0

p0
R0A0. (19)
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We will refer to equation (19) as the consolidated budget constraint. Observe that the RHS is an expression for the

real value of initial wealth for the representative agent. This should somewhat remind you of the implementability

constraint in Ramsey problems. Thus, initial wealth is divided between the time 0 value of consumption less

work/taxes and a term containing a measure of real money balances through time. If Rt > 1, the money component

has positive value in the equation and then the consumption/labor component is reduced, necessarily leading to a

reduction in lifetime utility. In this sense, nominal interest rates in excess of 1 represent the opportunity cost of

money. More on this later.

Let us now consider two different stationary settings in which the money supply, quantity of bonds and lump-

sum transfers are fixed in some sense. First, consider the basic case in which Mt = M̄,Bt = B̄ and Tt = T̄ ∀t. So,

government money creation, bond sales and transfers are fixed quantities for every period. This further will imply

that the price level and interest rate are fixed at p̄ and R̄, respectively. Going back to the inter-temporal equation

(13∗), we simply have

R̄ =
1

β
(20)

as quantity of consumption is constant, as well. This is equating the nominal interest rate to the inverse of the

discount factor in equilibrium. If we instead let the money supply grow at some constant rate θ > 1 such that

Mt+1 = (1 + θ)Mt, then the price level would adjust accordingly as pt+1 = (1 + θ)pt and we would observe

R =
1

β
Π =

1

β
(1 + π) =

1

β
(1 + θ). (21)

This is simply a unique case of the Fisher equation. The term representing the real interest rate on bonds is

simplified due to a constant level of consumption through time. Thus, the real rate of return for the bonds (or its

opportunity cost of investing) is simply the inverse of the discount factor.

8.1.2 Money Neutrality and Superneutrality

Let’s now discuss neutrality. In this model, if we were to take two economies with objects (c1t, c2t, nt) with money

stock Mt and a separate economy with objects (ĉ1t, ĉ2t, n̂t) and money stock αMt where α > 0, all else is the same

and these objects are equilibria, then the allocations for consumption and labor/leisure are identical. Look at our

model in a steady state with constant money stock, as characterized by the FOC in (20). A one-time increase to

the stock of money leaves the first-order condition unaffected and thus doesn’t change the quantity of real variable.

We would call this model economy neutral.

Definition 8.2. An economy is money neutral if the equilibrium allocations are invariant to a one-time change in

the stock of money.

Let’s say you are living on an island with one other inhabitant, Jeff. You and Jeff are pretty sophisticated and

enact an enforceable currency system with the 10 one-dollar bills you found. In this economy, the price of coconuts

eventually becomes $1. What happens when ten more dollars wash up on shore one day? The money supply

doubles, the price level doubles, coconuts become $2 and your equilibrium allocation does not change at all. This

is a crude example of money neutrality. The price level changes but the real quantities (the things that actually
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matter for utility) do not change. Now, let’s move to another common property that some monetary economies

exhibit: super neutrality.

Definition 8.3. An economy is super neutral if all real variables are invariant/independent with respect to changes

in the steady state long-run growth of the money supply.

For our cash-credit model, we introduced two different types of stationary equilibria: one with a constant stock

of money supply and the other with a growing supply, at some rate θ. When this is the case, we saw that the

equilibrium gross interest rate on government bonds was set to R = Π
β . If the rate of money growth and hence

inflation was altered to θ′ > Π, we would see an increase in the equilibrium interest rate to R′. What implications

follow from this? With higher R, the opportunity cost of money (or the money wedge) is increased, leading to a

decrease in lifetime utility and an affect on the real quantities in the economy. Thus, our model economy does not

exhibit super neutrality.

8.1.3 Optimal Quantity of Money and the Friedman Rule

Now that we’ve presented the structure of the model and some of the interactions that are taking place, we can

address the question of optimality. When the CIA constraint binds, there can be a certain cost to holding money.

This cost is reflected in the fact that agents could be investing their assets At in bonds, which earn some return

R ≥ 1. Let’s first look at the social planner’s approach to our economy:

max
∑

βtu(c1t, c2t, 1− nt)

s.t. c1t + c2t = nt

which leads to first-order conditions:

[c1t] :βtu1t − λt = 0

[c2t] :βtu2t − λt = 0

[nt] :βtunt − λt = 0

which implies that in the optimum we have
u1t

u2t
= 1. (22)

Thus, for a competitive equilibrium to attain the social optimum, we must equate equations (11) and (22) by

setting nominal gross interest Rt = 1. Let’s hark back to the Fisher equation. Under this setup, it is advised to set

the net interest rate to zero (i.e. r = 0). The equation becomes

π = −r̂.

with the real net interest rate in the economy set equal to the negative of the net inflation rate. Thus, the optimal

policy is to pursue deflation in the economy, slowly shrinking the money supply. This insight is attributed to Milton

Friedman and is called the Friedman rule. Does this sound right? One line to support this result is equation (19).

Having a nominal gross rate of 1 would cancel the first component of the LHS of the equation. In effect, this would
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maximize the amount of initial wealth that could be spent on real quantities. In addition, recall that there is an

opportunity cost to holding money, and the only reason for holding the asset is that it is required to consume the

cash good. What is this opportunity cost? The return Rt that one could get from a bond. When Rt > 1, the

CIA constraint will bind and the consumer will choose a sub-optimal level of consumption of the cash good, due

to the constraint. This constraint binds because the nominal quantity of money simply has a return of 1. Thus,

as an investment vehicle, it is an inferior product. By shrinking the money supply, the real value of a household’s

money is increasing at a rate equivalent to that of the bond return. Thus, under the Friedman rule, households will

consume the optimal quantity of goods c1t and c2t as if there were no CIA constraint.

———————————————

How is this policy implemented? The government must steadily decrease the money supply, so it may implement

this policy through lump-sum taxes on household money stocks at the end of the period.

———————————————

8.2 Stochastic Cash-Credit Model

Now, we may augment the model to exist in a stochastic environment in which output is some random variable

of an underlying shock. In particular, assume output y(s) is exogenously given with s as a random variable in a

finite state space and following a Markov process with a stationary transition function π(s′|s). For some initial

simplification, we will take the labor/leisure decision and bonds out of the current model. Thus, consumers simply

seek to maximize ∑
t

∑
st

u(c1t(s
t), c2t(s

t)). (1)

The randomness comes in the forms of shocks to the consumer’s endowment, as well as the growth rate of the

money supply. For the government, the growth rate of money is defined by the function g(st) which is a gross

rate measure of money supply growth. Let’s further characterize the economy’s aggregate stock of money as M t at

time t. The government budget constraint is simply to transfer the money stock to households through a lump-sum

transfer scheme. Thus, we observe the following aggregate law of motion for the money supply

M t(s
t) = g(st)M t−1 = M t−1(st−1) + Tt(s

t) (2)

in period t. In this model, we will consider stationary equilibrium; thus, without loss, we will drop the time

subscripts on the relevant variables. The CIA constraint is given by

p(s)c1(s) ≤M(s) (3)

and the consumer faces the period budget constraint

M ′(s′) = M(s) + p(s)[y(s)− c1(s)− c2(s)] + T ′(s′). (4)

A couple of things to pay attention to: The agent no longer enters the next period with assets At+1 which

may be divided into current-period money and bonds. Now, the agent simply goes from period to period with a

certain quantity of money, determined by their previous period consumption and the stochastic transfer from the
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government. Thus, in period t an agent implicitly chooses money stock Mt+1 by determining how much to consume

of c1t and c2t. The remainder of money after that plus the end-of-period transfer from the government Tt+1(st+1)

determines the cash available for period t+1. Thus, the agent chooses pre-transfer cash holdings, given expectation

of the transfers Tt+1.32

Before moving on, let’s divide both the CIA and budget constraint by the current period aggregate stock of

money M t. This leads to

p̂(s)c1(s) ≤ M̂(s) (3∗)

where hatted variables are for when objects are divided by the aggregate level of that period’s money stock. Further,

we have

M̂ ′(s′)g(s′) = M̂(s) + p̂(s)[y(s)− c1(s)− c2(s)] + g(s′)− 1. (4∗)

For the LHS, we use the operation M ′

M
= M ′

M
′
M
′

M
= M̂ ′g(s′) and given that T ′ = M

′ −M , we get the expression

g(s′)− 1 after dividing by the current period money supply.

We can now recast this problem as a functional equation for the consumer. Given the current state, as defined

by money holdings and current-period shock, the agent must make decisions with respect to current consumption

of c1 and c2, as well as next-period pre-transfer cash holdings M ′. We may write

v(M, s) = max
{c1(s),c2(s)}

{u(c1(s), c2(s)) + β
∑
s′

π(s′|s)v(M ′, s′)} (5)

subject to

p̂(s)c1(s) ≤M̂(s) (CIA)

M̂ ′(s′)g(s′) =M̂(s)− p̂(s)[y(s)− c1(s)− c2(s)] + g(s′)− 1. (BC)

c1t(s), c2t(s) ≥ 0

In the Lucas-Stokey paper, they specify the choice of pre-transfer balances as x3. In this setup, x3 = M̂(s) +

p̂(s)[y(s) − c1(s) − c2(s)], which leads to next-period money balances of M̂ ′(s′) = x3+g(s′)−1
g(s′) where the per capita

money holdings are normalized to one in each period (i.e. M̂(s) = 1). Under strong enough assumptions for the

utility function and correspondence defining the feasible set of choices, we can prove the existence of such a value

function v which implies the existence of policy functions for the choice variables.

Definition 8.4. In this economy, a recursive competitive equilibrium is defined by a value function v, policy func-

tions for {ĉ1, ĉ2}” a pricing system p(s) such that

i. v is a solution to the functional equation (5),

ii. policy functions gc1 and gc2 solve the functional equation, and

iii. markets clear:

32This notation is a little confusing because we have Tt+1 in the period t budget constraint. This may be rewritten differently to

achieve the same desired result. The only point being made is that the agent is not certain of how much cash she will have on hand in

the following period.
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a. c1(s) + c2(s) = y(s) ∀s ∈ S

b. M
′
(s′) = M(s) + T (s′) ∀s, s′ ∈ S

c. M̂(s) = 1 ∀s ∈ S.

For the market-clearing condition (iii)(c), we require that the aggregate supply of money, given any shock, is

equal to the aggregate post-transfer money holdings for the representative agent. Recall, M̂ represents per capita

holdings; thus, the condition requires that M(s) = M(s).

This model may easily be extended to include a one-period bond. In particular, we may include B′ which is a

bond, promising to pay 1 unit of the consumption good in the following period. Further, this bond is associated

with a price q′(s′). Now, once again, the agent will enter the current period with A(s) in nominal assets,

M(s) + q(s)B(s) = A(s)

with the same CIA constraint and a slightly augmented budget constraint

A′(s′) = M(s) + p(s)[y(s)− c1(s)− c2(s)] + T ′(s′) +B(s).

Under this setup, there are two primary results from the Lucas-Stokey paper. Result 1: Given that the shock s

is iid, the price of the one period bond q(s) is independent of s. Result 2: Given that s is iid and y(s) = y for

all s, then p(s) is independent of s, implying that c1(s) and c2(s) are independent of s, as well. Result 1 claims

that if shocks to worker income and the money growth rate are independent and identically distributed, then the

pricing of claims to next-period units of consumption no longer depend upon those stochastic processes. Further, if

the shocks are iid and only affect the money growth rate, the price level (and hence inflation) are independent of

the stochastic process for s. In addition, consumption decisions are made independent of the shock to the money

supply in every period.

8.3 Price Indeterminacy

Often we care whether or not the nominal variables in the model have been uniquely pinned down. Consider this

first, formal definition of an indeterminate variable.

Definition 8.5. Let {xt}∞t=0 be some equilibrium sequence, consisting of a price system and allocations for the

households and firms. This sequence is indeterminate if for some neighborhood N of {xt}, every sequence {x̂t} ∈ N

is also an equilibrium.

In this sense, an economy has multiple equilibria if both {xt} and {x̂t} are equilibrium; thus, indeterminacy

implies multiplicity of equilibria. Specifically, when we are considering the price system, we may solve for all of the

real variables in the model but fail to find one particular price that satisfies the equilibrium conditions.

8.3.1 Classic Monetary Model

Consider the following example, based upon the model and results presented in Chapter 2 of (Gaĺı, 2015). In what

follows, let capital letters denote nominal variables and lowercase letters for their log transform. A representative

64



Econ 8106 Chari Notes

agent wishes to maximize

E0

∞∑
t=0

βtU(Ct, Nt[Zt])

where Ct is consumption, Nt is labor at time t and Zt is a stochastic shock. This maximization is subject to the

budget constraint

PtCt +QtBt ≤ Bt−1 +WtNt (1)

where Pt is the price of the consumption good, Wt is the nominal wage and Bt is the price of a one-period, risk-free

bond. Also, given that the representative firm has a production function Yt = AtN
1−α
t , this leads to the first order

conditions

[Ct] : − Un,t
Uc,t

=
Wt

Pt
(2)

[Nt] : Qt = βt{Uc,t+1

Uc,t

Pt
Pt+1

} (3)

[Nf
t ] :

Wt

Pt
= (1− α)AtN

−α
t (4)

along with a transversality condition on the real value of one-period bonds.

Now, let us consider the utility function

U(Ct, Nt) = [logCt −
N1+φ
t

1 + φ
]Zt

and let us assume the following exogenous process on both productivity and stochastic shock parameters:

at = ρaat−1 + εat (5)

zt = ρzzt−1 + εzt (6)

where the coefficients are elements of [0, 1] and at = logAt and zt = logZt. Given the specific utility function above,

first-order condition (2) becomes WtPt = Cσt N
φ
t , which is

wt − pt = σct + φnt (7)

in log-transformed terms. In addition, and using a Taylor-series expansion around the steady state, the log-

transformed version of first-order condition (3) is

ct = Et[ct+1]− 1

σ
(it − Et[πt+1]− ρ) +

1

σ
(1− ρz)zt (8)

where it = −logQt is the nominal interest rate, πt+1 = pt+1 − pt is the inflation at date t and ρ = −logβ is the

discount rate.33 In addition, the log-transformed firm first-order condition (4) becomes

wt − pt = log(1− α) + at − αnt. (9)

33The Euler equation can be rewritten as 1 = β
Qt
Et[

Uc,t+1

Uc,t

Zt+1

Zt

Pt
Pt+1

]. This implies

1 = Et[exp(it − ρ− σδct+1 + δzt+1 − πt+1)], (*)

where we now utilize the log-transformed variables. A steady state with constant productivity growth γ and constant inflation π (in

which δct = 0) is characterized by i = ρ+σγ+π. Thus, a first-order Taylor series expansion of the exponent above, around the constant
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Lastly, let us introduce/postulate a money demand equation for real balances.

mt − pt = ct − ηit (10)

where η ≥ 0. For now, this demand equation is more or less coming out of thin air, but we will use for purposes of

this example.

Equate equations (7) and (9) and sub in yt for ct to get an equation in terms of nt and yt. Then, given the

log-transformed production function yt = at + (1− α)nt, we can solve for yt and nt:

nt =
1− σ

σ(1− α) + φ+ α
at +

log(1− α)

σ(1− α) + φ+ α
(11)

yt =
1 + φ

σ(1− α) + φ+ α
at +

(1− α)log(1− α)

σ(1− α) + φ+ α
. (12)

Next, making use of the identity it = rt +Et[πt+1], known as the Fisher equation, we can solve for the real interest

rate rt by utilizing (8), market-clearing conditions and the assumed processes (5) and (6):

rt = ρ+ (1− ρz)zt −
σ(1− ρa)(1 + φ)

σ(1− α) + φ+ α
at. (13)

Given our results for ct and yt in (12) and nt in (11), we can derive the real wage wt−pt from equations (7) or (9) by

making the proper substitutions. Thus, the real variables and the real prices are determined, absent of knowledge

of monetary policy, which is dictated by (10).

To examine a case in which the price level is not determined, consider a monetary policy where the nominal

interest rate is exogenous and of the form

it = i+ vt (14)

where vt follows the process

vt = ρvvt−1 + εvt ,

where we will refer to the vt’s as monetary policy shocks. From examining (13), if there is no growth (in the form

of shocks zt and at), then the steady state real interest rate will be r = ρ. Thus, in a perfect foresight, steady state

equilibrium, we will observe

i = ρ+ π.

steady state, is

exp(it − ρ− σδct+1 + δzt+1 − πt+1) =1 + (it − i)− σ(∆ct+1 − γ) + ∆zt+1 − (πt+1 − π)

=1 + it − σ∆ct+1 − πt+1 + ∆zt+1 − ρ

where we make use of the steady state identity above for i. Thus, to equate the LHS of (*), we must have 1 = exp(1), which implies

ct = Et[ct+1]−
1

σ
[it − Et[πt+1]− ρ− (1− ρz)zt]

which is the approximate Euler equation, where I made use of

Et[∆zt+1] = Et[ρzzt + εzt − zt] = (ρz − 1)zt.
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Thus, consider

Et[πt+1] =it − rt

=i+ vt − rt

=π + vt − r̂t

where r̂t = rt − ρ and the third equality makes use of the perfect foresight, steady state equilibrium quality for i.

Thus, expected inflation is uniquely pinned down, but now consider actual inflation πt = pt− pt−1. There does not

exist another condition that can uniquely solve for this value. Therefore, any equation satisfying

πt = π + vt−1 − r̂t−1 + ut

where ut is a shock, satisfying Et−1[ut] = 0 constitutes an equilibrium. This can be rewritten for the period t price

level as

pt = pt−1 + π + vt−1 − r̂t−1 + ut.

Thus, we have price level indeterminacy in this classic monetary model when the monetary policy corresponds to

the money demand equation (10) and a stochastic, exogenous process for the nominal interest rate. When the

process on monetary policy or the interest rate rule, we can have situations in which the price level is uniquely

pinned down. Refer to the Gaĺı text for these.
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8.3.2 Woodford Model

For another example of price indeterminacy, I will briefly review the deterministic model from Michael Woodford.34

Consider the same discounted utility maximization problem, where we assume that u is strictly concave in its credit

and cash good arguments and define

ĉ1 = argmax
c1

u(c1, y − c1)

where we assume 0 < ĉ1 < y, showing that the maximizing argument of the utility function is interior and less than

the deterministic endowment y. The representative agent is subject to the following constraints:

ptc1t ≤Mt (1)

Mt + E[rt+1Bt+1] ≤At + Tt (2)

At+1 = Mt+pt(y − c1t − c2t) +Bt+1 (3)

as well as non-negativity constraints on consumption, a no-ponzi condition on asset holdings and initial assets A0

is given. Equation (1) is the classic CIA constraint for the cash good. Equation (2) defines the securities market

restrictions that the agent faces every period. In particular, Given incoming assets At and a government transfer

Tt, the agent allocates this between current-period nominal money and purchases of next-period bonds, promising

to pay one unit (measured in some abstract unit of account). The government faces a similar budget constraint

Mt + E[rt+1Bt+1] = Mt−1 +Bt + Tt. (GBC)

Without spending time to re-derive, the paper shows that if a competitive equilibrium exists, it is necessary and

sufficient to observe:

c1t =
Mt

pt
(4)

c2t =y − c1t (5)

u2(mt)

pt
=βE[

u1(mt+1)

pt+1
] (6)

u2(t)rt+1 =β
pt
pt+1

u1(t+ 1) (7)

Essentially, we find that at bond interest rates Rt > 1, the CIA constraint binds, pinning down cash good consump-

tion as equal to the real money balances being held. Further, the household resource constraint holds within each

period. Using lowercase notation for real money balances, equation (6) provides an inter-temporal and cross-goods

equation for marginal rates of substitution, and equation (7) is the more familiar inter-temporal constraint for the

cash good. After some substitutions, the equilibrium can be sufficiently characterized by

rt+1 = β
pt
pt+1

u1(mt+1)

u1mt
. (8)

Now, as a simple case, let’s consider an constant money growth fiscal policy, where the money stock grows according

to

Mt = M0g
t (9)

34Monetary Policy and Price Level Determinacy in a CIA Economy from Economic Theory 4 (1994).
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where g is some constant, greater than 1. Further, the government implements this policy through lump sump

transfers, using the operation

Tt = (g − 1)Mt−1. (10)

Assuming a stationary equilibrium, the Euler equation (6) simplifies to

u2(m∗) =
β

g
u1(m∗). (11)

where m∗ is real money balances, satisfying m∗ = M
p from the CIA constraint. Now, a couple results from the

paper.

Proposition 8.1. With additively separable preferences (i.e. u(c1, c2) = u(c1)+u(c2)) and exogenous money supply

growth g, if i) g < β, there does not exist a steady state equilibrium, ii) if g = β, there exists a continuum of steady

state equilibria and iii) if g > β, steady state equilibria are locally isolated, if they do exist.

In a following section, titled self-fulfilling inflations, we can consider the following assumption

lim
c→0

cu1(c) = 0. (13)

Proposition 8.2. Suppose that peferences and the rate of money growth g satisfy assumptions (12), (13) and the

usual assumption on the utility function u. Then there exists a continuum of perfect foresight equilibria in each of

which real money balances approach zero asymptotically, and also an infinite number of sunspot equilibria in which

real money balances approach zero asymptotically with positive probability.35

The paper goes on to characterize many different conditions that are sufficient and/or necessary for unique

equilibria determination under both the constant money growth regime and an interest rate peg regime.

35Refer to the paper for definitions of perfect foresight equilibrium and sunspot equilibrium.
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9 Sticky/Stagnant Price Models

There exists evidence in data regarding slow adjustment of aggregate price levels (macroeconomic evidence) and in

significant price and wage rigidities in markets (microeconomic evidence). If our objective is to develop economic

models whose results are close to the data, so that we can further understand how this economic variables work,

we need to include some stickiness to prices in our models. We will work with the basic New Keynesian model, in

which monopolistic firms can adjust their prices in each period with a constant probability 1− θ. This is based on

the staggered price-setting model of Calvo (1983).

9.1 About the staggered price-setting model

Imagine there is a fairy in the economy, which we refer to as Calvo fairy. This being appears at the beginning of

each t, chooses fraction (1 − θ) of firms randomly and taps them on the shoulder, giving them the permission to

change their prices. This occurs every period.

A more realistic story is that there are small costs of changing prices in the economy, referred to as menu costs.

Assuming a unit mass of firms in each period, a fraction θ of firms find it too costly to adjust their prices to

unanticipated shocks in the economy.

For a firm that sets its price in period t, there is a (1−θ) chance of resetting price next period. With probability

θ, the firm has to keep its price fixed in period t+ 1. So, the chance of a one-period rigidity is θ(1− θ). Therefore

the expected length of price rigidity is
∞∑
k=0

θk(1− θ)k

which is a geometric power series converging to 1/(1− θ).

9.2 Environment

There are three types of agents in the economy:

1. Households

Representative agent infinitely lived whose preferences over consumption of different varieties of goods, labor,

and money are represented by the following utility function in expected form:

E0

∞∑
t=0

βt[U(Ct, Nt) + V (Mt/Pt)]

where Ct is a consumption index for each differentiated good i. We will assume there is a exogenous continuum

of such goods in the economy, of unit mass.

2. Firms

There is a unit mass continuum of monopoly firms (they choose their own price) that produce each differen-

tiated good i. In each period, fraction 1− θ of the firms have the chance to adjust their prices, while fraction

θ has to keep their price fixed and meet the demand in the market.
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3. Government

The government prints money and supplies it to the household, emits and pays bonds traded with the con-

sumer, and gives transfer to the consumer. We assume will assume stochastic money growth that will generate

an ad-hoc money demand equation.

9.3 Households

Problem of the representative household is:

max
Ct(i,st),Bt+1(st),Nt(st)

E0

∞∑
t=0

βt[U(Ct(s
t), Nt(s

t)) + V (Mt(s
t)/Pt(s

t))]

s.t. Ct(s
t) =

[ ˆ 1

0

Ct(i, s
t)
ε−1
ε di

] ε
ε−1

ˆ 1

0

Pt(i, s
t)Ct(i, s

t)di + Mt(s
t) + Qt(s

t)Bt+1(st, s
t) ≤

Bt(s
t−1) + Wt(s

t)Nt(s
t) + Tt(s

t) + Mt−1(st−1) + Πt(s
t)

lim
T→∞

Et(Bt) ≥ 0

The last condition rules out the possibility of Ponzi schemes in the economy. For notation purposes, we are

omitting the history dependence of the variable, but they should be taken into account.

To solve the household problem we need two different steps: (1) to decide the fraction of wealth household

wants to allocate to consumption, and then (2) divide this fraction between the different varieties of consumption

goods. We will begin with the latter; given an amount W of wealth dedicated to consumption and price of each

differentiated good, how the household divides W between varieties. Since we have separable utility with money,

we can write the problem as follows:

max
C(i)

U(C,N)

s.t. C =
[ ˆ 1

0

C(i)
ε−1
ε di

] ε
ε−1

ˆ 1

0

P (i)C(i)di = W

The first order conditions for variety i:

Uc(C,N)C(i)
−1
ε

[ ˆ 1

0

C(k)
ε−1
ε dk

] 1
ε−1

= λP (i) ∀i ∈ (0, 1)

where λ is the lagrange multiplier on the budget constraint.

Dividing the first order conditions for varieties i and j we have:

C(i)−1/ε

C(j)−1/ε
=
P (i)

P (j)

C(i) =

[
P (j)

P (i)

]ε
C(j)
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Plugging back the last equation to the definition of C,

C =

[ ˆ 1

0

[[P (j)

P (i)

]ε
C(j)

] ε−1
ε

di

] ε
ε−1

C =
P (j)ε[ ´ 1

0
P (i)1−εdi

] ε
1−ε

C(j)

C(j) =

[
P (j)

P

]−ε
C

where P ≡
[ ´ 1

0
P (i)1−εdi

] 1
1−ε

is the aggregate price index.

Additionally, we can rewrite the budget constraint as:

W =

ˆ 1

0

P (i)C(i)di =

ˆ 1

0

P (i)
[P (i)

P

]−ε
Cdi = PC

using the definition for price index in the last equality.

Regarding the decision between consumption and labor, the consumer’s problem can be written as,

max
Ct(ist),Bt+1(st),Nt(st)

E0

∞∑
t=0

βt[U(Ct(s
t), Nt(s

t)) + V (Mt(s
t)/Pt(s

t))]

Pt(s
t)Ct(s

t) + Mt(s
t) + Qt(s

t)Bt+1(st) ≤ Bt(st−1) + Wt(s
t)Nt(s

t) + Tt(s
t) + Mt−1(st−1) + Πt(s

t)

lim
T→∞

Et(Bt) ≥ 0

The first order conditions are defined as follows:

βtπt(s
t)UC(st) = Pt(s

t)λt(s
t)

βtπt(s
t)UN (st) = −Wt(s

t)λt(s
t)

βtπt(s
t)VM (st)(1/Pt(s

t)) = λt(s
t)−

∑
st+1|st

λt+1(st+1)

Qt(s
t)λt(s

t) =
∑

st+1|st
λt+1(st+1)

VM (st) = UC(st)(1−Qt(st))

The optimality conditions derived from the first order conditions:

UN (t)

UC(t)
= −Wt

Pt

Qt = βEt

[UC(t+ 1)Pt
UC(t)Pt+1

]
Now, lets assume that the utility function takes the following separable form,

U(C,N) =
C1−σ

1− σ
− N1+φ

1 + φ
+

(M/P )1+α

1 + α
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Then the optimality conditions can be written as

1 = Et

(
β

1

Qt

C−σt+1

C−σt

Pt
Pt+1

)

(Mt/Pt)
α = C−σ(1−Qt)

Nφ
t

C−σt
=
Wt

Pt

The Euler Equation can be written in natural log terms as:

1 = Et(exp(log β + it − σ∆ct+1 − πt+1))

where it ' log(1/Qt), ∆ct+1 = log(Ct+1) − log(Ct) = ct+1 − ct, Πt+1 =
Pt+1

Pt
, and lower case letters represent

the logarithm of the variables. (Note that log(1 + it) ≡ log(1/Qt) ' it.)

On a balanced growth path, assuming consumption grows at a constant rate γ, we have

1 = exp(log β + i− σγ − π)

i = − log β + σγ + π

A first order Taylor expansion around the balanced growth path yields:

exp(log β + it − σ∆ct+1 − πt+1) ' 1 + log β + it − σ∆ct+1 − πt+1

Substituting the last result in the Euler Equation gives

ct = Et(ct+1)− 1

σ
(log β + it − Et(πt+1))

The optimality condition between labor and consumption can also be expressed in logarithmic terms,

wt − pt = σct + φnt

9.4 Monopoly firms

The continuum of monopoly firms produce each good i with the same technology:

Yt(i) = AtNt(i)

Firm i faces a demand function from the consumers,

Ct(i) =

[
Pt(i)

Pt

]−ε
Ct

and takes price index Pt and aggregate consumption Ct as given. Firms change their prices in Calvo Fairy style.

They discount future profits with qt,t+k(st+k)π(st+k|st) which is the value of one unit in t to be delivered in t+ k

given history st+k.
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The problem faced by the firm choosing in t to adjust its price is as follows.

max
Pt(i)

∞∑
k=0

θkEt

(
qt,t+k(Pt(i)Yt+k|t(i)−Ψt+k(Yt+k|t(i)))

)

s.t. Yt+k|t(i) =

[
Pt(i)

Pt+k

]−ε
Ct+k

where Ψ is the cost function.

The value of qt,t+k(st+k)π(st+k|st) corresponds to the price of a bond bought in period t (with history st) and

received in period t + k given history st+k. To obtain te value let’s consider the following endowment economy

consumer’s problem:

max
ct(st),bt+k(st+k|st)

E0

∑
t

βtu(ct(s
t))

s.t. pt(s
t)ct(s

t) + qt,t+k(st+k)π(st+k|st)bt+k(st+k|st) ≤ pt(st)yt(st) + bt(s
t)

Then the first order conditions of the problem are:

βtπt(s
t)uc(s

t) = λt(s
t)pt(s

t)

λt(s
t)qt,t+k(st+k)π(st+k|st) = λt+k(st+k)

Then the optimality condition for the price of the bonds:

qt,t+k(st+k) = βk
uc(s

t+k)

uc(st)

pt+k(st+k)

pt(st)

Returning to the monopoly firm’s problem, we can substitute for the demand function, and rewrite the problem

as

max
Pt(i)

∞∑
k=0

θkEt

(
qt,t+k(Pt(i)Pt(i)

−εP εt+kCt+k −Ψt+k(Pt(i)
−εP εt+kCt+k))

)
The first order conditions for this problem with respect to Pt(i) (and substituting back for Yt+k|k(i)),

∞∑
k=0

θkEt

(
qt,t+k

(
(1− ε)Yt+k|k(i) + εPt(i)

−1Yt+k|t(i)
∂Ψt+k(Yt+k|t)

∂Yt+k|t(i)

))
= 0

If we multiply both sides of the equality by Pt(i)/(1− ε),

∞∑
k=0

θkEt

(
qt,t+kYt+k|k(i)

(
Pt(i)−

ε

ε− 1
ψt+k|k(i)

))
= 0

where ψt+k|t(i) ≡
∂Ψt+k|t(i)

∂Yt+k|t(i)
is the nominal marginal cost of the firm on period t+ k.

If technology is the same for every firm, then ψt+k|t(i) = ψt+k|t(j) which implies that Pt(i) = Pt(j) = P ∗t .

Note that if θ = 0, with frictionless optimal pricing, the condition is equal to

P ∗t =
ε

ε− 1
ψt+k|t
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which means that the price of the monopolistic firm is marked up above the marginal cost by a constant that

depends on the elasticity of demand. Denote this markup M≡ ε
ε−1 .

Dividing this equation by Pt−1 (price index at time t− 1) and substituting for inflation Πt−1,t+k ≡ Pt+k
Pt−1

we can

rewrite this condition as:

∞∑
k=0

θkEt

(
qt,t+kYt+k|t

( P ∗t
Pt−1

−M
ψt+k|t

Pt+k

Pt+k
Pt−1

))
= 0

∞∑
k=0

θkEt

(
qt,t+kYt+k|t

( P ∗t
Pt−1

−M MCt+k|t Πt−1,t+k

))
= 0

where MCt+k|t is the real marginal cost in period t+ k of a firm that sets its price at t.

Consider the steady state of this economy. In this case, since consumption and prices remain constant (P ∗t =

Pt = Pt+1), inflation is equal to one, and Qt,t+k = βk.

Then the first order condition implies,

MCt+k|t =
1

M
We can log-linearize the firm’s first order condition around the zero-inflation steady state as:

p∗t − pt−1 = (1− βθ)
∞∑
k=0

(βθ)kEt(mct+k|t +m+ pt+k − pt−1)

Note: To log-linearize an equation of the form f(Xt, Yt) = g(Zt) around the steady state, use the following

formula:

g′(Z)Zzt ' f1(X,Y )Xxt + f2(X,Y )Y yt

where X,Y , and Z are the steady-state values of variables Xt, Yt, Zt and the small letters denote natural

logarithms.

9.5 Aggregate Price Level Dynamics

Let St ⊂ [0, 1] be the subset of firms that did not adjust their prices at t. The aggregate price index in period t is

given by

P 1−ε
t =

ˆ
St

Pt−1(i)1−εdi+

ˆ
Sct

Pt(i)
1−εdi

For the fraction (1− θ) firms that are allowed to change its price in t, we know they will choose P ∗t .

ˆ
Sct

Pt(i)
1−εdi = (P ∗t )1−ε

ˆ
Sct

di = (1− θ)(P ∗t )1−ε

For the fraction θ of firms that couldn’t change price in t we have

ˆ
St

Pt−1(i)1−εdi = θ

ˆ 1

0

Pt−1(i)1−εdi

and applying the definition for the price index in t− 1, Pt−1,
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θ

ˆ 1

0

Pt−1(i)1−εdi = θP 1−ε
t−1

Hence, the aggregate price level at t can be written as

P 1−ε
t = θP 1−ε

t−1 + (1− θ)(P ∗t )1−ε

Dividing the last equation by Pt−1 we get

( Pt
Pt−1

)1−ε
= θ + (1− θ)

( P ∗t
Pt−1

)1−ε

Π1−ε
t = θ + (1− θ)

( P ∗t
Pt−1

)1−ε

In the zero-inflation steady state inflation equals one, and prices remain constant, P ∗t = Pt = Pt−1. Then if

we log-linearize around the steady state we get

(1− θ)(p∗t − pt−1) = πt

9.6 Equilibrium

Definition 9.1. A monetary equilibrium with sticky prices is given by household allocation {Ct(st), Ct(i, st),

Nt(s
t),Mt(s

t), Bt+1(st)}, firm’s allocation {Yt+k|t}, policy allocation {Mg
t (st), Bgt+1(st), Tt(s

t), qt,t+k}, and prices

{Pt(i, st), Pt(st), Qt(st),Wt(s
t)} s.t.

(i) household’s allocation solve their problem given prices and policy, (ii) the monopoly firm’s chose price given

the demand of their product, (iii) government satisfies it’s budget constraint, Mt(s
t)+Mt−1(st−1)+Qt(s

t)Bt+1(st) =

Bt(s
t−1) + Tt(s

t), and (iv) labor and consumption good markets clears.

Solving for the equilibrium. Given technology for firms Yt(i) = AtNt(i), the cost function is

Ψt(i) = WtNt(i) = Wt
Yt(i)

At

Then the real marginal cost in period t+ k of a firm that sets its price in t is

MCt+k|t =
Wt+k

At+kPt+k

which is the same for all firms (no matter at what time they adjust their price), and, hence, equal to MCt+k.

Applying logarithm to the last equation

mct+k = wt+k − pt+k − at+k

Substituting this result into the firm’s log-linearized first order condition around the zero-inflation steady state,

p∗t − pt−1 = (1− βθ)
∞∑
k=0

(βθ)kEt(mct+k +m) + (1− βθ)
∞∑
k=0

(βθ)kEt(pt+k − pt−1)
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We can expand this equation as

p∗t − pt−1 = (1− βθ)
∞∑
k=0

(βθ)kEt(mct+k +m)

+ (1− βθ)
∞∑
k=0

(βθ)k(pt+k − pt+k−1 + pt+k−1 − pt+k−2 + pt+k−2 + ...+ pt − pt−1)

= (1− βθ)
∞∑
k=0

(βθ)kEt(mct+k +m)

+ (1− βθ)
∞∑
k=0

(βθ)kEt(πt+k + πt+k−1 + ...+ πt)

Which is equal to

p∗t − pt−1 = (1− βθ)
∞∑
k=0

(βθ)kEt(mct+k +m)

+ (1− βθ)(πt + βθπt + (βθ)2πt) + ...)

+ (1− βθ)(βθπt+1 + (βθ)2πt+1 + ...) + ...

= (1− βθ)
∞∑
k=0

(βθ)kEt(mct+k +m)

+ (1− βθ)
[ πt

1− βθ
+ βθ

πt+1

1− βθ
+ ...

]
= (1− βθ)

∞∑
k=0

(βθ)kEt(mct+k +m) +

∞∑
k=0

(βθ)kEt(πt+k)

Re-writing this equation for t+ 1, by the Law of Iterated Expectations, we have

Et(p
∗
t+1 − pt) = (1− βθ)

∞∑
k=0

(βθ)k+1Et(mct+k+1 +m) +

∞∑
k=0

(βθ)k+1Et(πt+k+1)

Et(p
∗
t+1 − pt) = (1− βθ)

∞∑
k=1

(βθ)kEt(mct+k +m) +

∞∑
k=1

(βθ)kEt(πt+k)

Then we can write it as

p∗t − pt−1 = βθEt(p
∗
t+1 − pt) + (1− βθ)(mct +m) + πt

And substituting for the log-linearized equations in the steady state, (1− θ)(p∗t − pt−1) = πt

πt
1− θ

= βθEt

( πt+1

1− θ

)
+ (1− βθ)(mct +m) + πt

πt = βEt(πt+1) +
(1− θ)(1− βθ)

θ
(mct +m)

Now, looking into the labor market, we know
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Yt(i) =
[Pt(i)
Pt

]−ε
Yt

Yt(i) = AtNt(i)

and the labor-market clearing condition states

Nt =

ˆ 1

0

Nt(i)di

Nt =

ˆ 1

0

Yt(i)

At
di

Nt =
Yt
At

ˆ 1

0

[Pt(i)
Pt

]−ε
di

Taking the logarithm of the last equation

nt = yt − at + dt

where dt is a measure of price dispersion across firms. Around the zero-inflation steady state, dt = 0, and we

can write this equation as:

nt = yt − at

Substituting from the good’s market clearing condition into the household’s optimality condition for labor supply:

wt − pt = σyt + φnt

wt − pt = σyt + φ(yt − at)

And considering the value for the mct,

mct = wt − pt − at

= σyt + φ(yt − at)− at

= (σ + φ)yt − (1 + φ)at

In the case of flexible prices, we have shown that mcnt = −m and in the linearized equation mcnt = (σ + φ)ynt −

(1 + φ)at. Then we can show

mct +m = (σ + φ)(yt − ynt ) ≡ (σ + φ)ỹt

where ỹt = yt − ynt are the deviations from the flexible pricing model.

Substituting in our last equation for inflation, we obtain the New-Keynesian Phillips Curve,

πt = βEt(πt+1) + κỹt

where κ = 1
θ (1− θ)(1− βθ)(σ + φ).

Now looking at the log-linearized form of the Euler Equation,
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ct = Et(ct+1)− 1

σ
[logβ + it − Et(πt+1)]

Substituting ct = yt and adding ynt on both sides we obtain the Dynamic IS Equation,

ỹt = Et(ỹt+1)− 1

σ
[it − Et(πt+1) + log β − σEt(∆ynt+1)]

where ỹt = yt − ynt .

The New-Keynesian Phillips Curve and the Dynamic IS Equation, together with a policy equation that deter-

mines the dynamics of nominal interest rate, it, characterize the equilibrium of the economy.

The process governing it depends on how monetary policy is conducted, which in our case is through ad-hoc

money demand equation (this in contrast to classical models where monetary policy is neutral). Here, monetary

policy is a key determinant of real changes in the economy. For instance, an equation usually noted to describe how

monetary authority reacts to the inflation rate and output gap is the Taylor rule,

it = − log β + αππt + αy ỹt + νt

where απ and αy are non-negative and νt is an exogenous component with zero mean.
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10 Sustainable Equilibrium

Often within monetary or fiscal policy models, we assume the government has some credible commitment technology.

This means that the government will honor in the future whatever it announces it will do today. For example, say

the government announces a constant rate of money growth θ for all future time periods and this government is

benevolent, meaning it seeks to optimize aggregate welfare. Even though a one-time positive shock in the growth

rate of money may increase social welfare, the government will not do so because of its previous commitment.

Such assumptions add a good deal of simplicity to modeling the environment. While convenient, this assumption

is unrealistic, as modern economic history contains many episodes of sovereign debt defaults, inflation crises, failed

currency pegs and political backtracking. The key insight here is that government authorities can only commit to

an action if that action is aligned with their incentives not just today, but at all future dates and states of nature.

In this section, we will review the formal way in which to look at these type of equilibria.

10.1 Chari-Kehoe Model

This subsection reviews the paper and results from V.V. Chari and Pat Kehoe’s Sustainable Plans from the Journal

of Political Economy (1990). The environment is a little more complicated than that of the previous subsection,

but still obeys the general definition, provided in Definition 10.2. Below is an illustration, demonstrating the timing

of events in this model.

ω

Period t Starts

f1t

AM

πt f2t

PM t Ends

ω

t+ 1 Starts

As you can see, a single time period is characterized by a morning and night (i.e. AM or PM) which determines

the sequence of events that takes place between the representative household and government. For any given time

period t, the household gains utility from AM consumption (c1t), PM consumption (c2t) and leisure (1− lt). Over

an infinite horizon, utility is summarized by the function

∞∑
t=0

βtu(c1t + c2t, 1− lt). (1)

In each period, the household starts the day with the endowment ω and determines how to split this between

consumption and capital investment:

c1t + kt ≤ ω. (2)

This capital earns a rate of interest R ≥ 1, which is to be realized at night/PM. It is also during the PM stage that

the household chooses labor supply, earning a one-to-one return of consumption for labor. The PM is also the time

in which the government may impose a labor tax τ and a capital tax δ. Thus, the PM budget constraint is

c2t ≤ (1− δt)Rkt + (1− τt)lt. (3)

As for the government, it faces a balanced budget constraint for each period and must raise the exogenously

determined revenue g; thus, we have

g = δtRkt + τtlt, (4)
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and in order to guarantee that the government does not rely solely on taxing capital, we impose the assumption

Assumption 10.1. g > (R− 1)ω.

As can be inferred from the timeline above, the sequence of events is as follows: While in the AM, consumers

make decisions with respect to current consumption and capital investment. During the transition from AM to PM,

the government imposes its current policy, specifying taxes on capital and on labor. Once in the PM, the consumer

makes decisions (with respect to the government’s policy) as to the amount of labor to employ and consumption.

Thus, for any period t, we have a household allocation rule ft = (f1t, f2t) = ((c1t, kt), (lt, c2t)) and a government

policy πt = (τt, δt). Note: Let’s maintain the same understanding from the last subsection that πt implicitly defines

all future period policies; that is, πt = {τt, δt, τt+1, δt+1, ...}. We may further compact the household rule and

government policy into the sequences f = {ft}∞t=0 and π = {πt}∞t=0, respectively.

Recall that a Ramsey equilibrium loosely refers to an environment with commitment in which the government

chooses (at date 0) the fiscal policy that maximizes welfare. In particular, given knowledge of how households

respond to a policy π, the government picks the π that maximizes welfare in a competitive equilibrium setting, and

does so with respect to household and government budget constraints.

Definition 10.1. A Ramsey equilibrium is a policy π and household allocation rule f such that

1. For all π̂,

f(π̂) = argmax

∞∑
t=0

βtu(c1t + c2t, 1− lt)

subject to the household budget constraint for all t, and

2. the government chooses a fiscal policy π such that

π = argmax

∞∑
t=0

βtu(c1t(π) + c2t(π), 1− lt(π))

subject to the household and government budget constraints for all t.

Thus, given a credible commitment strategy and knowing the household’s best response (as characterized by the

sequence of functions f), the government maximizes utility in a way to meet the household constraints and its own

revenue requirements. Given this equilibrium notion, the paper proves the following proposition.

Proposition 10.1. The Ramsey outcome (πr, fr) has AM allocations cr1t = 0 and krt = ω and a capital tax rate

δrt = R−1
R for every period.

While not used in the section 10.1, we’ll introduce the notion of a history, as it is included in the paper. A

history ht−1 is simply the set of all past government policies, up until date t; that is, ht−1 = {π0, π1, ..., πt−1}. Thus,

at the beginning of period t, the household is aware of the history of policies and makes a decision accordingly, such

that f1t(ht−1). The government’s period t policy is also a function of this history. Lastly, given the period policy

πt, the history is updated to ht and the PM decisionf2t(ht) = f2t(ht−1, πt) is made by the household.

We haven’t forgotten about the policy mapping either! Instead of the constant function σ for all t, we consider

the sequence of mappings σ = {σ1, σ2, ...} for this model. By the time we get to period t, the government observes
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ht−1 and chooses period t policy by σt(ht−1). We have a sustainable equilibrium if σt(ht−1) coincides with all

previous specifications of πt.
36

Definition 10.2. A sustainable equilibrium is a pair (π, f) along with the sequence of policy mappings σ that satisfy

the following conditions:

1. Given the policy π and mapping σ, the continuation of the allocation rule f solves the consumer’s problem,

during the AM, for every history ht−1, and the continuation of the allocation rule solves the consumer’s

problem, during the PM, for every history ht.

2. Given an allocation rule f , continuation plan of σ solves the government’s problem for every history ht−1.

3. Markets clear.

(1) specifies that households respond optimally to each history and these responses coincide with the initial

allocation rules f ; (2) states that the government responds optimally to each history in a way that maximizes

competitive welfare of the household, satisfies its own budget constraint and coincides with its initial policy plan π.

Theorem 10.1. In this setting, the autarky equilibrium (σa, fa) is the worst sustainable equilibrium. That is, for

any sustainable equilibrium (σ, f), U(σ, f) ≥ U(σa, fa), where U represents lifetime utility of the household.

Autarky refers to the scenario in which the household chooses to not roll over or invest any of its capital for

consumption in the PM stage for any period. Lastly, the main result of the paper.

Theorem 10.2. An arbitrary pair of realized outcomes (π, f) is a sustainable equilibrium if and only if

1. the pair (π, f) is a competitive equilibrium at date 0 and

2. for every period t, the following inequality holds:

∞∑
s=t

βs−tu(c1s + c2s, ls) ≥ ud(kt) +
β

1− β
ua

where ua is utility earned from autarky and ud is the one-period maximized utility of the household, subject to the

PM constraint and the government budget constraint.

Refer to Lemma 2 and the actual theorem in the paper for a more explicit understanding of the notation. At

face value, think of ud as the one shot highest utility a household can get in period t while still respecting the

relevant constraints. If ua is autarky utility, then β
1−β is the present value of an infinite stream of autarky outcomes

for the household.

What is the best sustainable outcome we can obtain?

We know the Ramsey outcome will yield the highest utility for the household, but, is it sustainable?

Theorem 10.3. Folk’s Theorem. There exists a discount factor β∗ ∈ (0, 1) such that if β ≥ β∗ then the Ramsey

equilibrium is sustainable.

36Why does the government choose time t policy with the history ht−1 and not {ht−1, f1t(ht−1)}? Because it is redundant. The

government is aware of the household’s response function f and thus ht−1 is a sufficient statistic for knowing f1t.
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Proof. Let uR be de utility derived from a Ramsey equilibrium, ud the highest utility derived in a one shot

deviation, and ua the autarky utility. Then the sustainability constraint is

uR

1− β
≥ ud +

βua

1− β

uR ≥ (1− β)ud + βua

By assumption, ud ≥ uR ≥ ua. Let β∗ be the discount factor such that the sustainability constraint holds with

equality,

β∗ =
ud − uR

ud − ua
≥ 0

Then for all β ≥ β∗ the sustainability constraint holds and the Ramsey equilibrium is sustainable.
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10.2 Prelim Questions

Setup: Consider a production economy with a large number of idenical, infinitely lived individuals. There are two

goods: labor and consumption. These correspond to a period utility function U(ct, lt). There exists a per capita gov-

ernment expenditure gt, determined by a finite, independent and identical stochastic process. The government can

finance this with taxes on labor income and issuing one-period debt. The initial stock of government debt is known

and positive. Government debt must be non-negative; that is, the household cannot borrow from the government.

A) Define a competitive equilibrium.

A TDCE is a sequence of household allocation rules ZH = {ct(gt), lt(gt), bt+1(gt)}∞t=0, a firm production plan

ZF = {lft (gt)}∞t=0, a government policy {gt, τt(gt), bgt+1(gt)}∞t=0 and prices {Rt(gt), wt(gt)}∞t=0 such that the house-

hold, taking prices as given, solves

max
ZH

∞∑
t=0

∑
gt

βtπ(gt)u(ct(gt), lt(gt))

s.t. ct(gt) + bt+1(gt) ≤ (1− τt(gt))wt(gt)lt(gt) +Rt(gt)bt(gt−1)

s.t. b0 > 0, bt+1(gt) ≥ 0, ct(gt) ≥ 0 ∀t,∀gt

the firm, taking prices as given, solves

max
ZF

lft (gt)− wt(gt)lft (gt) ∀t,∀(gt)

the government budget constraint holds:

gt +Rt(gt)bt(gt−1) = τt(gt)wt(gt)lt(gt) + bt+1(gt) ∀t,∀(gt)

and markets clear:

ct(gt) + gt = lt(gt) and bgt (gt) = bt(gt) and lft (gt) = lt(gt) ∀t, ∀(gt).
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B) Suppose that the government wishes to implement the best competitive equilibrium. Set up

the Ramsey problem. With a multiplier of λt(gt) on the budget constraint, we have first-order conditions

[ct(gt)] :βtπ(gt)uc(gt) = λt(gt)

[lt(gt)] :βtπ(gt)ul(gt) = (1− τ(gt))λt(gt)

[bt+1(gt)] :− λt(gt) +
∑
gt+1

λt+1(gt+1)Rt+1(gt+1) = 0.

the consolidation of first order conditions between consumption and labor leads to

ul(gt)

uc(gt)
= (1− τt(gt))wt(gt) = (1− τt(gt)), (1)

given that the firm first order condition provides a wage of 137, and

1 = β
∑
gt+1

π(gt+1)

π(gt)

uc(gt+1)

uc(gt)
Rt+1(gt+1). (2)

The procedure for attaining an implementability constraint proceeds as follows: Multiply the period t+1 budget

constraint by β πt+1(gt+1)
πt(gt)

uc(gt+1)
uc(gt)

and sum over all realizations of gt+1. You get

∑
gt+1

β
πt+1(gt+1)

πt(gt)

uc(gt+1)

uc(gt)
[ct+1(gt+1) + bt+2(gt+1)] =

∑
gt+1

β
πt+1(gt+1)

πt(gt)

uc(gt+1)

uc(gt)
[(1− τ(gt+1)) +Rt+1(gt+1)bt+1(gt)]

⇒ β

uc(gt)
Et[uc(gt+1)ct+1(gt+1) + uc(gt+1)bt+2(gt+1)] =

β

uc(gt)
Et[ul(gt+1)] + bt+1(gt)

⇒bt+1(gt) =
β

uc(gt)
Et[uc(gt+1)ct+1(gt+1) + uc(gt+1)bt+2(gt+1)− ul(gt+1)],

which is an expression for bt+1(gt). Now, use this in the current period budget constraint, which is

ct(gt) + bt+1(gt) = (1− τ(gt)) +Rt(gt)bt(gt−1), and get

ct(gt) +
β

uc(gt)
Et[uc(gt+1)ct+1(gt+1)− ul(gt+1) + uc(gt+1)bt+2(gt+1)] = 1− τ(gt) +Rt(gt)bt(gt−1)

⇒ 1

uc(gt)
Et[uc(gt)ct(gt) + βuc(gt+1)ct+1(gt+1)− ul(gt)− βul(gt+1)] + βEt[

uc(gt+1)

uc(gt)
bt+2(gt+1)] = Rt(gt)bt(gt−1).

As can be seen, a pattern will emerge, given the repeated substitution of the next-period bond equation. Thus,

assuming that

lim
T→∞

βEt[
uc(gt+T )

uc(gt)
bt+T (gt+T−1)] = 0

and setting t = 0, we get the implementability constraint∑
t=0

βtE0[uc(gt)ct(gt)− ul(gt)] = uc(g0)R0(g0)b0,

or ∑
t

∑
gt

βtπ(gt)[uc(gt)ct(gt)− ul(gt)lt(gt)] = uc(g0)R0(g0)b0 (3)

where we assume π(g0) = 1 and lt(gt) = 1 ∀t and ∀gt.

37Firm’s maximize lft (gt)− wt(gt)lft (gt), where the derivative with respect to lt(gt) gives the desired result.
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For the planner, with commitment, the Ramsey problem is

max

∞∑
t=0

∑
gt

βtπ(gt)u(ct(gt), lt(gt))

s.t. ct(gt) + gt = lt(gt)

s.t.
∑
t

∑
gt

βt
π(gt)

uc(g0)
[uc(gt)ct(gt)− ul(gt)lt(gt)] = R0(g0)b0

C) Suppose now that the government lacks commitment. Assume policies and allocations can

depend on the entire history of policies. Define a sustainable equilibrium

When the government lacks commitment, it is able to renege on promises or future plans that have been

made to the household. Within the economic environment of this problem, the only inter-temporal instrument the

government uses is bonds. Thus, we will allow for the government to default at a rate δt(gt) ∈ [0, 1] on promised

bond payments Rt(gt)bt(gt−1). Notice, given that δ is in the unit interval, we can have partial defaults. Period t

repayments are a function of bonds sold in period t − 1, leading to the inter-temporal aspect of the commitment

problem. Within a given period, define a government policy as ψt = (τt(gt), δt(gt), (bt+1(gt))gt+1
) and the household

allocation rule as ft = (ct(gt), (bt+1(gt))gt+1 , lt(gt)). Note: gt does not appear in the government policy because

it is a stochastic and exogenous variable that the government does not control. Now, a definition for sustainable

equilibrium.

Definition 10.3. Let f = {ft}∞t=0 be a sequence of household allocation rules for each time period and let ψ =

{ψt}∞t=0 be a sequence of government policy rules with a corresponding sequence of policy mappings σ = {σt}∞t=0

such that σt : ht−1 → ψt where the history ht is defined as ht = (ht−1, σt(ht−1)).38 A sustainable equilibrium is the

pair (σ, f) such that Added for all time periods in the conditions.

1. Given σ, for every time t and ∀ht

{fs}∞s=t ∈ argmax
∞∑
s=t

∑
gs

βs−tπ(gs)u(cs(gs), ls(gs))

s.t. cs(gs) +
∑
gs+1

bs+1(gs+1|gs) ≤ (1− τs(gs))ws(gs)ls(gs) + δs(gs)Rs(gs)bs(gs−1)

2. Given f and ht−1, for every time t,

{σs}∞s=t ∈ argmax
∞∑
s=t

∑
gs

βs−tπ(gs)u(cs(gs), ls(gs))

s.t. gs + δs(gs)Rs(gs)bs(gs−1) = τs(gs)ws(gs)ls(gs) +
∑
gs+1

bs+1(gs+1|gs, )

3. Markets clear

38Implicitly, we are assuming that within any time period, the government makes an action first, followed by a household response.
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where future allocations and utilities are induced by the σ and f .39 40

D) Without commitment, what is the best sustainable equilibrium if g0 is positive and gt = 0 for

all t ≥ 1?

Refer to part E for a generalized proof.

E) Without commitment, what is the best sustainable equilibrium if gt = g > 0 for t = 1, 2, ..., T

and gt = 0 for all t ≥ T + 1?

For the remainder of the question, we will assume that sequential equilibria are characterized by trigger mech-

anisms, or revert-to strategies. This is in line with Chari, Kehoe (1990) and Chari, Kehoe (1993). Here, assume

that if the government deviates from its announced policy in period t, then there is autarky for periods t + 1 and

onward. That is, there is no bond market and the government can only finance expenditures through its labor tax.

Lastly, note that we have moved into a deterministic environment.

Claim 10.1. If gt = 0 ∀t ≥ τ for some τ , then any sustainable plan must default at τ .

Proof. Given that the government does not need to finance expenditures after period τ − 1, the government budget

constraint becomes: δtRtbt ≤ τtlt + bt+1. In particular, for the first period τ , we have

δτRτ bτ ≤ ττ lτ

with the government objective of maximizing

∞∑
t=τ

βt−τu(ct, lt)

subject to ct + bt+1 ≤ (1− τt)lt + δtRtbt ∀t ≥ τ .41 If the government defaults in period τ , the household receives

welfare Ud + β
1−βV whereas if the government does not default, the household receives UND + β

1−βV . Thus, the

government’s decision is with respect to which period τ utility is higher. Consider the household’s feasibility set

(c, l) ∈ Γ(τ, w) such that

Γ(τ, w) = {(c, l) : c ≥ 0, l ∈ [0, 1], c = (1− τ)l + w}

where w corresponds to a bond repayment. Given that the government must finance period τ bond repayments

with a distortionary tax τ l = w, we note that Γ(τ, w) ⊆ Γ(0, 0) for any τ, w > 0. Thus, from a planner’s perspective,

39When we say that future histories are induced by a pair (σ, f), we are stating that for any date t, the government policy (along

with the household allocation rule) maps ht−1 into ht into ht+1 and so forth, such that the future household utility can be computed

∞∑
s≥t

βs−tU(cs(hs−1))

as a function of the histories. Essentially, knowing how the household and government optimize and respond to one another, we can

forecast the future histories of the game, which determine future utility levels.
40In the second item, there is no consumer budget constraint included because the response functions, which the government is taking

as given, already optimize with respect to this constraint.
41This proof assumes that the government does not choose to roll over debt with bτ+1. Given a no-ponzi condition and episolon

argument, this proof will follow through for the more general case in which the government is allowed to roll over some debt.
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facing resource constraint c = l, the maximum is attained at ul
uc

= 1. Further, when faced with (τ, δRτ bτ ) = (0, 0),

the household first order condition coincides with the planner’s. Thus, any scheme (τ, w) > 0 is feasible under the

(0, 0) fiscal and it is this policy that obtains the maximum utility for the household. Thus, the government will

choose to set δτ = 0.

corollary 1. If gt = 0 ∀t ≥ τ for some τ , then any sustainable plan must have bτ = 0.

Claim 10.2. If bt = 0 ∀t = τ, τ + 1, ..., then any sustainable plan must have default on τ − 1 bonds.

Proof. Suppose that pairing (σ, f) defines a sustainable plan for the economy in which i) bt = 0 for all t = τ, τ+1, ...

and ii) there exists positive lending for all previous periods; that is, bt > 0 ∀t = 0, 1, ..., τ − 1. The government

faces the trigger mechanism which specifies that bt+1 = 0 for all future periods, given a deviation from policy in

period t. Now, consider the government in period τ − 1. It seeks to solve

max
{δt,τt}∞t=τ−1

∞∑
t=τ−1

βt−(τ−1)u(ct, lt) (1)

s.t. δτ−1Rτ−1bτ−1 + gτ ≤ ττ−1lτ−1

s.t. gt ≤ τtlt ∀t = τ, τ + 1, ...

If the government deviates in period τ −1, the trigger mechanism relegates the government to optimizing household

welfare with respect to the government budget constraint

gt ≤ τtlt ∀t = τ, τ + 1, ...

which is no different than the original problem (1). Thus, the trigger mechanism does not constrain the government

from optimizing in period τ − 1. Given this, and through the same distortionary tax logic of the former proof, the

government finds it optimal to maximize household welfare by setting (δτ−1, ττ−1) = (0, 0).

Given this, the household allocation rule f would optimally set bτ−1 = 0 in period τ − 2. This contradicts the

plan with bt > 0 for t = 0, 1, ..., τ − 1 being a sustainable one. Thus, a sustainable plan will have default in period

τ − 1.

Through the same proof technique and using induction, we arrive at the following:

corollary 2. If If bt = 0 ∀t = τ, τ + 1, ..., then any sustainable plan must also have default at period t = 0.42

Thus, if the government faces a trigger mechanism of no borrowing autarky, and has a finite stream of expen-

ditures (stopping at some date τ), then any sustainable plan must have date 0 default on any positive government

debt.

42This follows through inductive reasoning.
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F) Conjecture conditions on the stochastic process for government consumption, and on the

discount fact so that the Ramsey outcome is sustainable. Try to prove your conjecture for extra

credit.

In Chari and Kehoe (1990), the environment was static in the sense that there was not a state variable, such as

bonds, that created a time-dependence. In that case, a Ramsey equilibrium would induce a constant utility payoff

for all periods URP whereas the trigger strategy would consist of a one-period deviation utility Ud(g) and a future,

constant utility level V d. Thus, for Ramsey plans to be sustainable, we must observe

1

1− β
URP ≥ Ud(g) +

β

1− β
V d

⇒ β

1− β
[URP − V d] ≥ Ud(g)− URP .

Thus, as the discount factor gets sufficiently high, the Ramsey plan will be a sustainable plan. Further, if any plan

is sustainable at discount β, it will be sustainable for discount factor β′ ∈ [β, 1].
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Alternative Setup: Let the government consumption process be deterministic such that

gt =

gH , even periods

0, odd periods

where the government can default on debt at any time and the government raises revenues by levying a proportional

tax τt on labor income.

G) Define competitive equilibrium, set up the Ramsey problem and define a sustainable equilib-

rium.

A TDCE is a sequence of household allocation rules ZH = {ct, lt, bt+1}∞t=0, a firm production plan ZF = {lft }∞t=0,

a government policy {gt, τt, δt, bgt+1}∞t=0 and prices {qt, wt}∞t=0 such that the household, taking prices as given, solves

max
ZH

∞∑
t=0

βtu(ct, lt)

s.t. ct + bt+1 ≤ (1− τt)wtlt + (1− δt)qtbt

s.t. b0 > 0, bt+1 ∈ [−D,D], ct ≥ 0 ∀t,

the firm, taking prices as given, solves

max
ZF

lft − wtl
f
t ∀t,

the government budget constraint holds:

gt + (1− δt)qtbt = τtwtlt + bt+1 ∀t

and markets clear:

ct + gt = lt and bgt = bt and lft = lt ∀t.

In this model, a Ramsey equilibrium is a policy π = (π0, π1, ...) and a household allocation rule f = (f1, f2, ...)

that satisfy

i. Policy π maximizes
∑∞
t=0 β

tu(ct(π), lt(π)) subject to GBC ∀t,

ii. ∀π′, the allocation rule f(π′) maximizes
∑∞
t=0 β

tu(ct, lt), subject to HH budget constraint and GBC.

where i says the government policy maximizes date-0 welfare, and ii says that f is a best-response function to

government policies.

Definition 10.4. Let Rt denote the value of government surplus: Rt = uc(τtlt − gt). Given the HH first order

condition and resource feasibility. Rt = ucct + ullt.

Proof.

Rt =uc(τtlt − lt + ct)

=ucct + uclt(τt − 1)

=ucct + ullt
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Proposition 10.2. In the Ramsey problem, consumption and labor allocations solve∑
t

βtu(ct, lt)

s.t.ct + gt = lt (1)

s.t.
∑
t

βtRt ≥ min{0, uc(0)(1− δ0)b0} (2)

The last condition is the implementability constraint. It requires that the value of government surpluses exceeds

the value of initial debt. The min operator further requires that the government default on initial debt, if positive.

Proof. Subtract the consumer’s budget constraint by the government’s budget constraint to get the resource feasi-

bility condition (1):

ct + bt+1 − [τtwtlt + bt+1] = (1− τt)wtlt + (1− δt)qtbt − [gt + (2− δt)qtbt]

⇒ ct + gt = wtlt = lt (imposing equilibrium wage)

For condition (2), multiply the household budget constraint by βtuc(t) and sum over time:

∞∑
t=0

βtuc(t)[ct − (1− τt)lt + bt+1] =

∞∑
t=0

βtuc(t)(1− δt)qtbt

⇒
∞∑
t=0

βt[uc(t)ct + ul(t)lt + uc(t)bt+1] =

∞∑
t=0

βtuc(t)(1− δt)qtbt (by − ul(t)
uc(t)

= 1− τt)

⇒
∞∑
t=0

βt[uc(t) + ul(t)] = uc(0)(1− δ0)b0 +

∞∑
t=0

βt+1uc(t+ 1)(1− δt+1)qt+1bt+1 − βtuc(t)bt+1 (assuming q0 = 1)

= uc(0)(1− δ0)b0 +

∞∑
t=0

βtbt+1[βuc(t1)(1− δt+1)qt+1 − uc(t)]

= uc(0)(1− δ0)b0. (by uc(t) = β(1− δt+1qt+1uc(t+ 1)))

Further, if the government has positive initial debt, it is optimal to default (i.e. δ0 = 0 ) as to not distort household

labor incentives. Thus,

uc(0)(1− δ0)b0 > 0 =⇒
σ

δ0 = 1

for a total default on initial debt. As a result, we have
∑∞
t=0 β

t[uc(t)+ul(t)] =
∑∞
t=0 β

tRt ≥ min{0, uc(0)(1−δ0)b0},

proving condition (2).

Lastly, refer to Definition 10.3 for a definition of sustainable equilibrium.
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Disclaimer This section is more or less a regurgitation (an ugly word for an ugly answer) of Chari and Kehoe’s

older papers. It doesn’t directly answer the question but was the best I had, going in to the prelims.

H) What is the worst sustainable equilibrium, without commitment? Show that the best sustain-

able equilibrium solves a programming problem. Show that the key constraint is any allocations must

satisfy a sustainability constraint where the RHS of constraint is utility associated with best one shot

deviation plus the sum of discounted utilities assocaited with the worst continuation equilibrium.

Show that if gH is sufficiently large, the Ramsey outcomes are sustainable in the best sustainable

equilibrium.

In what follows, we will proceed in defining sequential equilibrium in an environment with trigger-type strategies,

as done by Chari, Kehoe (1990) and Chari, Kehoe (1993). In this game, bonds act as a state variable which creates

a time-dependence between periods; thus, this setting cannot be fully analyzed as a repeated game. For this, we will

first define a Markov equilibrium and show that sustainable plans can be implemented through a revert-to-Markov

equilibrium concept.

Now, we begin to describe the properties that construct a Markov equilibrium. Let the Markov problem be

Vt(bt) =max

∞∑
s=t

βs−tu(cs, ls)

s.t.− ul(cs, ls)

uc(cs, ls)
= (1− τs)∀s = t, t+ 1, ... (FOC1)

s.t.uc(cs, ls) = β(1− δt+1)Rs+1uc(cs+1, ls+1) ∀s = t, t+ 1, ... (FOC2)

s.t.bt+1 ∈ [−D,D] (No Ponzi)

s.t.

∞∑
s=r

βs−ru(cs, ls) ≥ Vr(br) ∀r = t+ 1, t+ 2, ... (Consistency)

s.t.HHBCs and GBCs ∀s = t, t+ 1, ... (Budget Constraint)

where the Consistency condition requires that the plan chosen at date s will still be the solution to the date s value

function when that date arrives. Note that at date 0, this gives the Ramsey allocations and policies. Consider the

second programming problem: the Household problem:

Wt(bt, πt) =max

∞∑
s=t

βs−tu(cs, ls)

s.t.FOC1, FOC2,No Ponzi,Consistency,HHBC

s.t.Government Budget Constraints ∀s = t+ 1, t+ 2, ...

This is identical to the Markov problem, except for the fact that the date t government budget constraint does not

need to be met. Thus, the problem allows for deviation in the current period. The Markov problem is used to

construct a government policy σm and the Household problem is used to construct a consumer allocation fm. This

formulation can allow for more than one solution, as well.

Claim 10.3. The policy plans (σm, fm), constructed from solutions to the Markov problem and Household problem,

are a Markov equilibrium. Further, these form a sustainable equilibrium.
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Proof. Both the Markov problem and the Household problem are recursive in nature. For the consumer, given

some history ht = (ht−1, πt), maximize their utility subject to their resource constraints at all future dates, where

future government policies evolve according to σm. The consumer chooses allocations with respect to its first order

conditions FOC1, FOC2 and no ponzi conditions. Further, from date t+ 1 onward, the household allocation rules

coincide with the Markov problem at date t + 1, given inherited debt bt, as a solution to the Household problem.

Thus, there is no incentive to deviate. Now, consider the government at any history ht−1. Note that

Vt(bt) = max
πt

Wt(bt, πt)

In this sense, there is an overlap in the incentives of both the government and household. Thus, there does not

exist another one-shot deviation or policy that improves welfare of the household, given fm.

When, in a given period (or period 0), there is zero initial/entering debt, the Markov problem can be written as

V0(b0) = max

∞∑
t=0

βtu(ct, lt) (*)

s.t.ct + gt = lt ∀t

s.t.

∞∑
t=0

βtRt ≥ 0

s.t.

∞∑
s=r

βsRs ≤ 0 ∀r = 1, 2, ...

requiring that the present value of all future government surpluses be nonpositive. It can be shown that there exists

a debt sequence such that, a solution to (∗) coincides with the solution to the Markov problem. In the example, we

will use these constraints to check that a plan satisfies the Markov problem.

Now, we consider a modified version of Markov equilibria: the Revert-to-Markov equilibria. This is an analogue

to trigger strategies in repeated games. The mechanism works as follows: given some sequence (π, x), with policies

(π0, π1, ..., πt−1) up until date t − 1, consider a deviation at time period t: π̂t. The allocation rule for date t is

given by the solution to the Household problem Wt(bt, π̂t). Further, for any policy πt+1, policies at date t + 1 are

solutions to Wt+1(bmt+1, πt+1), and so forth in a recursive fashion. The reversion policy for the government works

analogously.

Claim 10.4. An arbitrary sequence (π, x) can be supported by a revert-to-Markov plan if and only if i) it is attainable

under commitment (i.e. it maximizes date 0 utility subject to household and government budget constraints) and ii)

for every t, the following inequality holds:

∞∑
s=t

βsu(cs, ls) ≥ Vt(bt).

Proof. Given attainable under commitment, the continuation of x is optimal given the continuation of π and vice

versa. Further, for the government, the best one-shot deviation is the Markov strategy, and condition ii) shows that

the government will choose to not deviate. Thus, a plan is sustainable under the trigger strategy if it maximizes

date zero utility (subject to constraints) and offers weakly greater utility than the Markov problem at each date

t.
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Claim 10.5. In any revert-to-Markov equilibrium, the value of debt is nonpositive at each date. Further, when

b0 = 0, the allocation under the revert-to-Markov equilibrium are unique.

First, consider the following scenario:

Odd Spending

For gt = 0 for t even and gt = γ for t odd, under the Ramsey plan, the budget is balanced in a two-period

cycle, such that

R(0) + βR(γ) = 0

Assume that the utility function is such that R(g) is decreasing, which implies that R(0) is positive and R(γ) is

negative. Thus, the government optimally smooths distortions by running a surplus in peacetime and deficit in

wartime. For t even, we have
∑∞
r=t β

rR(g) = 0 and for t odd, we have
∑∞
r=t β

rR(gr) = βtR(γ) < 0. This implies

the Ramsey allocations solve (∗) which implies that for a certain debt sequence, they are also sustainable. In even

t, issue bt+1 = R(γ)
Uc(c(γ),l(γ) < 0. For t odd, issue bt+1 = 0. Essentially, the government runs a slight surplus in

peacetime to make loans and pay for wartime spending through the return on those loans. Now, consider our

example:

Even Spending

Given the claim above for a sustainable plan wit Revert-to-Markov strategies, the worst sustainable plan is one

which is i) attainable under commitment and ii) offers weakly higher continuation utility, compared to the Markov

problem at all future dates. Thus, if the utility associated with the Markov equilibrium is a lower bound, the

Markov plan is the worst sustainable equilibrium.

In the problem, for gt = γ for t even and gt = 0 for t odd, under the Ramsey plan, the budget is balanced in a

two-period cycle, such that

R(γ) + βR(0) = 0

Since R(g) is decreasing, this implies that R(0) is positive and R(γ) is negative. Thus, the government optimally

smooths distortions by running a surplus in peacetime and deficit in wartime. For t even, we have
∑∞
r=t β

rR(gr) =

βtR(0) > 0 and for t odd, we have
∑∞
r=t β

rR(gr) = 0. In even t, issue bt+1 = R(0)
Uc(c(0),l(0) > 0. For t odd,

issue bt+1 = 0. This implies a peacetime surplus and wartime deficit, but at date 0, it issues positive debt. The

government will find it optimal to default on this debt at date 1 and follow the Markov plan: this will give the

Ramsey allocations of the corresponding problem above. Thus, positive debt is not sustainable at date 0 (by the

revert to Markov plan) and the government must finance the initial wartime spending through distortionary taxes.

This is the best sustainable equilibrium: it features a balanced government budget in the initial period, and then

the implementation of the Ramsey problem, starting in period t = 1, which is the peacetime period.

condition ii) of the claim above, says that for any date t, the continuation utility of a plan must exceed the

continuation utility of the Markov problem. If it does not, then agents have the incentive to deviate in period t and

then play within the confines of the Markov equilibrium. Thus, given a sustainable plans induced stream (c, l)∞t=0,

it must satisfy the date t constraint

∞∑
s=t

βs−ru(cs, ls) ≥ max
π′

u(c∗t , l
∗
t ) + β[

∞∑
s=t+1

β2(s−(t+1))VM1 + β2[s−(t+1)]+1VM2]
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for all t, where (c∗, l∗) represents the quantities associated with the best one-shot deviation in period t and VM1

and VM2 represent the period utilities associated with the Markov problem in peacetime and wartime spending,

depending upon the date t of the deviation.

For implementing the Ramsey equilibrium as the best sustainable equilibrium, we will require a different deviation

policy (other than the Revert-to-Markov strategy). If there exists a multiplicity of sustainable equilibrium, we can

define trigger strategies that revert to this level of present value welfare. For sufficiently high government spending

and sufficiently high discount factors, the government would find it optimal to maintain positive debt with zero

default. It would do this because the trigger strategy would outweigh the benefit of such a one-shot deviation.
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11 Appendix

11.1 Transversality Condition

Often overlooked and misunderstood is the transversality condition that we impose on maximization problems when

the model is one of infinite time. This condition can be interpreted as a boundary condition of sorts, and is used as a

sufficient (and generally necessary) condition to ensure a solution to the maximization program under consideration.

As some motivation for its usage, consider the following problem

max
{kt+1}Tt=0

T∑
t=0

βtu(F (kt)− kt+1)

subject to the constraint kt+1 ∈ [0, F (kt)], where initial capital k0 is given and T <∞. Given a strictly increasing

utility function, the agent solving this problem wishes to consume as much as possible. Thus, in period T , the agent

optimally selects kT+1 = 0 and cT = F (kT ). This gives us a boundary condition for the choice of capital in the last

period. In this model, we can derive the Euler equations

u′(F (kt)− kt+1) = βu′(F (kt+1)− kt+2)F ′(kt+1) ∀t = 0, 1, ..., T − 1

This equation applies to all time periods; thus, we would have a system of t equations in T + 1 unknowns, but the

end condition KT + 1 reduces that to an identified system, which can yield a unique solution. So, what becomes of

us when we move on to the problem

max
{kt+1}∞t=0

∞∑
t=0

βtu(F (kt)− kt+1)

with the same constraint set? We have the same Euler equation conditions, but now we have an infinite series of

choices and no clear end of time boundary condition for capital. The solution is to introduce the transversality

condition (TVC) which acts as the infinite time analogue to the previous boundary condition. What does KT+1

mean for the finite time model? It more or less implies that value of capital in time T + 1 is zero for the agent, in

terms of its present value marginal benefit. Because of this, the agent optimally sets it to zero. In mathematical

terms, it basically means

βT+1u′(F (kT+1)− kT+2)F ′(KT+1) · kT+1 = 0.

Let’s unpack this. βT+1 puts this period T + 1 return in terms of present value. u′(F (kT+1) − kT+2)F ′(KT+1)

provides the marginal utility of increasing capital investment into period T +1, where its magnitude is measured by

the marginal increase in output (and hence marginal increase in T +1 consumption). Multiplied by total kT+1 gives

the value of the kT+1 capital stock, measured in time 0 utility. Thus, in infinite time, we impose the transversality

condition

lim
t→∞

βtu′(F (kt)− kt+1)F ′(kt) · kt = 0. (TVC)

Given certain assumptions on the utility function and economic environment (Theorem 4.15 of SLP), the Euler

equations and TVC are necessary and sufficient conditions for a solution to the sequence problem. What does this

mean? There may be a variety of initial capital positions k0 and capital sequences that satisfy the Euler equations.

These will not be optimal unless they satisfy the TVC, as well. This is a mathematical result but should also be
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an intuitive one, as well: it makes sense that the marginal value of capital investment is insignificant to the agent,

when measured in terms of date 0 utility. In some circumstances, the TVC is represented by the condition

lim
t→∞

λtkt+1 = 0

where λt is the multiplier on the feasibility constraint from the planner problem. This is equivalent to the above

stated TVC:

lim
t→∞

λtkt+1 = lim
t→∞

βtu′(F (kt)− kt+1)kt+1

= lim
t→∞

βt−1u′(F (kt−1)− kt)kt

= lim
t→∞

βt−1[βu′(F (kt)− kt+1)F ′(kt)]kt (Euler Equation Sub)

= lim
t→∞

βtu′(F (kt)− kt+1)F ′(kt) · kt = 0.

Transversality conditions can also be imposed upon other agent decisions within a model when there are more choice

variables with inter-temporal ramifications.
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